Journal of Library and Information Science in Agriculture ›› 2022, Vol. 34 ›› Issue (7): 76-87.doi: 10.13998/j.cnki.issn1002-1248.22-0165
Previous Articles Next Articles
HUANG Taihua1, ZHANG Tao1,*, WANG Lei2
CLC Number:
[1] 刘邦奇, 袁婷婷, 纪玉超, 等. 智能技术赋能教育评价: 内涵、总体框架与实践路径[J]. 中国电化教育, 2021(8): 16-24. LIU B Q, YUAN T T, JI Y C, et al.Intelligent technology enabling education evaluation: Connotation, overall framework and practice path[J]. China educational technology, 2021(8): 16-24. [2] 梁樱花. 大数据对我国高校教育管理的影响及其应对措施——评《基于大数据的高校教育管理研究》[J]. 中国科技论文, 2021, 16(11): 1287. LIANG Y H.The influence of big data on the education management of colleges and universities in my country and its countermeasures - Comment on "research on college education management based on big data"[J]. China sciencepaper, 2021, 16(11): 1287. [3] 朱东妹. 多源数据融合视角下的阅读推广用户画像构建研究[J]. 图书馆理论与实践, 2021(6): 99-105. ZHU D M.Research on the construction of user profile for reading promotion from the perspective of multi-source data fusion[J]. 4 Library theory and practice, 2021(6): 99-105. [4] ZAUGG H, RACKHAM S.Identification and development of patron personas for an academic library[J]. Performance measurement and metrics, 2016, 17(2): 124-133. [5] 张治, 刘小龙, 徐冰冰, 等. 基于数字画像的综合素质评价: 框架、指标、模型与应用[J]. 中国电化教育, 2021(8): 25-33, 41. ZHANG Z, LIU X L, XU B B, et al.Comprehensive quality assessment based on digital portrait: Framework, indicators, model and applications[J]. China educational technology, 2021(8): 25-33, 41. [6] 余明华, 张治, 祝智庭. 基于可视化学习分析的研究性学习学生画像构建研究[J]. 中国电化教育, 2020(12): 36-43. YU M H, ZHANG Z, ZHU Z T.Research on the construction of student portrait in research - Based learning based on visual learning analytics[J]. China educational technology, 2020(12): 36-43. [7] 邓嘉明. 智慧校园学生数据画像生成方式研究[J]. 现代电子技术, 2019, 42(21): 58-62. DENG J M.Research on creation ways of data image of students in intelligent campus[J]. Modern electronics technique, 2019, 42(21): 58-62. [8] 邹丽伟, 刘晋禹. 智慧育人理念下的大学生信息精准服务研究[J]. 情报科学, 2021, 39(8): 120-125. ZOU L W, LIU J Y.Accurate information service for college students under the concept of intelligent education[J]. Information science, 2021, 39(8): 120-125. [9] GILLEN-O'NEEL C, ROEBUCK E C, OSTROVE J M. Class and the classroom: The role of individual- and school-level socioeconomic factors in predicting college students' academic behaviors[J]. Emerging adulthood, 2021, 9(1): 53-65. [10] MUTHUVELOO R, SHANMUGAM N, TEOH A P.The impact of tacit knowledge management on organizational performance: Evi-dence from Malaysia[J]. Asia pacific management review, 2017, 22(4): 192-201. [11] ZHAO H, ZUO Y, XU C, et al.What are students thinking and feeling? Understanding them from social data mining[J]. International journal of computer applications in technology, 2021, 65(2): 110-117. [12] 舒江波, 葛雄, 彭利园, 等. 基于学生个人大数据的行为特征分析[J]. 华中师范大学学报(自然科学版), 2020, 54(6): 927-934. SHU J B, GE X, PENG L Y, et al.Analysis of behavioral characteristics based on student's personal big data[J]. Journal of central China normal university(natural sciences), 2020, 54(6): 927-934. [13] 龚黎旰, 顾坤, 明心铭, 等. 基于校园一卡通大数据的高校学生消费行为分析[J]. 深圳大学学报(理工版), 2020, 37(s1): 150-154. GONG L G, GU K, MING X M, et al.Analysis of college students' consumption behavior based on campus card data[J]. Journal of Shenzhen university(science and engineering), 2020, 37(s1): 150-154. [14] 张存禄, 马莉萍, 陈晓宇. 贫困生资助对大学生消费行为的影响: 基于校园卡消费大数据和问卷调查数据的研究[J]. 教育与经济, 2021, 37(3): 80-87, 96. ZHANG C L, MA L P, CHEN X Y.A study of the mobility of rural young and middle-aged teachers: Field, habitus, and capital theory[J]. Education & economy, 2021, 37(3): 80-87, 96. [15] 宋德昌. 基于校园卡的学生经济状况评价方法研究[J]. 中山大学学报(自然科学版), 2009, 48(s1): 9-11. SONG D C.Research on the evaluation method of student economy status based on campus card[J]. Acta scientiarum naturalium uni-versitatis sunyatseni, 2009, 48(s1): 9-11. [16] 周炫余, 刘林, 陈圆圆, 等. 基于多模态数据融合的大学生心理健康自动评估模型设计与应用研究[J]. 电化教育研究, 2021, 42(8): 72-78. ZHOU X Y, LIU L, CHEN Y Y, et al.Research on design and application of an automatic assessment model for college students' mental health based on multimodal data fusion[J]. E-education research, 2021, 42(8): 72-78. [17] 张华, 刘颖. 运用多任务排序学习算法预测学业成绩[J]. 扬州大学学报(自然科学版), 2020, 23(5): 63-67. ZHANG H, LIU Y.Predicting academic performance using multi-task learning RankNet[J]. Journal of Yangzhou university(natural science edition), 2020, 23(5): 63-67. [18] 黄涛, 赵媛, 耿晶, 等. 数据驱动的精准化学习评价机制与方法[J]. 现代远程教育研究, 2021, 33(1): 3-12. HUANG T, ZHAO Y, GENG J, et al.Evaluation mechanism and method for data-driven precision learning[J]. Modern distance education research, 2021, 33(1): 3-12. [19] NIE M, YANG L, SUN J, et al.Advanced forecasting of career choices for college students based on campus big data[J]. Frontiers of computer science, 2018, 12(3): 494-503. [20] QU S, LI K, ZHANG S, et al.Predicting achievement of students in smart campus[J]. IEEE access, 2018, 6: 60264-60273. [21] ZHANG W, JIANG L.Algorithm analysis for big data in education based on depth learning[J]. Wireless personal communications, 2018, 102(4): 3111-3119. [22] 王卫芳. 基于校园大数据的学业表现预测及行为分析[D]. 重庆: 重庆大学, 2019. WANG W F.Academic performance prediction and behavior analysis based on campus big data[D]. Chongqing: Chongqing university, 2019. |
|