中文    English

Journal of Library and Information Science in Agriculture ›› 2020, Vol. 32 ›› Issue (3): 29-36.doi: 10.13998/j.cnki.issn1002-1248.2019.12.12-1085

• Research paper • Previous Articles     Next Articles

Discipline Development Trend Analysis based on Text Semantic Understanding

YU Li   

  1. 1. National Science Library, Chinese Academy of Sciences, Beijing 100190;
    2. State Key laboratory of Resources and Environmental Information System, Beijing 100101
  • Received:2019-12-12 Online:2020-03-05 Published:2020-03-23

Abstract: [Purpose/Significance] Academic papers are the important strategic resources for the development of scientific and technological innovation. They are also the primary data that reflect the research trends of one subject, which provide the valuable methodological and innovative basis for the follow-up researchers. Recently, the knowledge organization of academic papers still lack of the fine-grained knowledge, which hinders the upgrading of scientific and technological information services to computerization and precision. [Method/Process] Firstly, this paper provides a framework of analyzing the semantic of article content: the "research topics" and "key technologies" are extracted from papers by using a semi-automatic model. Secondly, a multi-level clustering method for phrases are designed. The synonymous phrases are merged by clustering in the horizontal direction, and the hierarchical relations are built by clustering in the vertical direction. Finally, the experiments are carried out by using the massive abstracts from the core journals in the discipline of geographic information science. Based on the bibliometric analysis, we analyzed the top N of "research topics" and "key technologies", and their development trajectories over time. [Results/Conclusions] The proposed method can provide technologies and datasets for the intelligent service of the scientific and technological information.

Key words: artificial intelligence, semantic annotation, neural network, phrase clustering, bibliometric analysis

CLC Number: 

  • G251
[1] Karunan K, Lathabai H H, Prabhakaran T.Discovering interdisciplinary interactions between two research fields using citation networks[J]. Scientometrics,2017,113(1):335-367.
[2] 许海云,尹春晓, 郭婷,等.学科交叉研究综述[J].图书情报工作,2015,59(5):119-127.
[3] 闵超,孙建军.学科交叉研究热点聚类分析——以国内图书情报学和新闻传播学为例[J]. 图书情报工作,2014,(1):109-116.
[4] 王昊. 基于关联规则挖掘研究学科间相关性[J].现代图书情报技术,2005,(03):23-28.
[5] Hu J, Zhang Y.Discovering the interdisciplinary nature of Big Data research through social network analysis and visualization[M]. Springer-Verlag New York, Inc.2017.
[6] [美]J·H·谢拉著,张沙丽译.图书馆学引论[M].兰州:兰州大学出版社,1956.
[7] 张锦.图书情报学引进传播学理论述评[J].图书与情报,1999,(2).
[8] 黄纯元. 传播学和情报学[J].情报学刊,1983,(4):21-23.
[9] 刘超,李秀霞,邵作运.国内图书情报学与新闻传播学间学科影响度和交叉度分析——基于期刊引文分析[J].情报杂志,2017,(07):99+115-119.
[10] 王传清,连鸿江.图书情报学与传播学理论交叉研究综述[J].图书情报工作,2004,48(8):94-97.
[11] 王亚军. 用传播学效果分析原理指导阅读辅导的策略与方式[J]. 情报杂志,2001,20(11):63-64.
[12] 马费成. 推进大数据、人工智能等信息技术与人文社会科学研究深度融合[J].评价与管理,2018,16(02):3-7.
[13] 马费成,张瑞,李志元.大数据对情报学研究的影响[J].图书情报知识,2018,(05):4-9.
[14] 王知津. 大数据时代情报学和情报工作的“变”与“不变”[J].情报理论与实践,2019,42(07):1-10.
[15] [美]Stephen W,Littlejohn.人类传播理论[M].北京:清华大学出版社.2009.
[16] 曾凡斌,陈荷.基于谷歌图书语料库大数据的百年传播学发展研究[J]. 现代传播:中国传媒大学学报,2018.
[17] 马秀峰,张莉,李秀霞.我国图书情报学与新闻传播学间的学科知识交流与融合分析[J].情报杂志,2017(02):63-69.
[18] 郭晓真. 人工智能时代传播学的现状与反思探究[J].传播力研究,2018,2(27):7-9.
[19] Reis F, Maricato JD.Scientific production of researchers linked to faculties of communication and information science and interdisciplinary relations between the fields[J].Informacao &Sociedade-Estudos,2018,28(2):227-244.
[20] 邢晓光. 大数据背景下传播学研究方式的转变[J].科技风,2018,(31):62.
[21] 郝龙,李凤翔.社会科学大数据计算——大数据时代计算社会科学的核心议题[J].图书馆学研究, 2017,(22):22-31+37.
[22] Younghee Noh.Imagining Library 4.0: Creating a Model for Future Libraries[J].The Journal of Academic Librarianship,2015,(41):786-797.
[23] Khan S A, Bhatti R.Digital competencies for developing and managing digital libraries[J].The Electronic Library, 2017,35(3):573-597. [24] 李广建,杨林.大数据视角下的情报研究与情报研究技术[J].图书与情报,2012,(6):1-8.
[25] 化柏林. 多源信息融合方法研究[J].情报理论与实践,2013,36(11):16-19.
[26] 苏玲,娄策群.我国情报学和传播学领域大数据研究探析[J].情报科学,2019,37(05):31-37.
[27] 王连喜,曹树金.学科交叉视角下的网络舆情研究主题比较分析——以国内图书情报学和新闻传播学为例[J].情报学报,2017,(02):53-63.
[1] GUO Weijia. Influencing Factors of Artificial Intelligence Readiness in Libraries [J]. Journal of Library and Information Science in Agriculture, 2022, 34(5): 47-56.
[2] LI Bo, LI Honglian, GUAN Qing, LIU Yang. Fine-grained Sentiment Analysis of Social Network Platform of University Libraries Based on CNN-BiLSTM-HAN Hybrid Neural Network [J]. Journal of Library and Information Science in Agriculture, 2022, 34(4): 63-73.
[3] LIN Zhuo, HUANG Haohai. Top Experts Identification and Evaluation of International Cooperation on Artificial Intelligence in China [J]. Journal of Library and Information Science in Agriculture, 2022, 34(1): 86-95.
[4] YANG Qian. Impact of Intelligent Consulting Robots on the Innovation of Reference Services in Libraries [J]. Journal of Library and Information Science in Agriculture, 2021, 33(5): 93-99.
[5] ZHANG Yuyao, CHEN Yuanyuan. Discourse Cognition and Construction Based on Text Mining: Taking the White House News Text in the Field of Artificial Intelligence and 5G as an Example [J]. Journal of Library and Information Science in Agriculture, 2021, 33(4): 35-44.
[6] SUN Tan, HUANG Yongwen, XIAN Guojian, CUI Yunpeng, LIU Juan. Considerations for the Development of Agricultural Informatization Driven by a New Generation of Information Technologies [J]. Journal of Library and Information Science in Agriculture, 2021, 33(3): 4-15.
[7] LYU Lucheng, HAN Tao. Artificial Intelligence Enables Knowledge Service and Opens up the Future of Intelligent Agriculture: Review of 2020 National Library and Information Youth Academic Forum [J]. Journal of Library and Information Science in Agriculture, 2021, 33(12): 83-88.
[8] ZHANG Zhixiong, LIU Huan, YU Gaihong. Building an Artificial Intelligence Engine Based on Scientific and Technological Literature Knowledge [J]. Journal of Library and Information Science in Agriculture, 2021, 33(1): 17-31.
[9] CHEN Tao, SHAN Rongrong, LI Hui. Semantic Annotation of Image Resources in Digital Humanities [J]. Journal of Library and Information Science in Agriculture, 2020, 32(9): 6-14.
[10] LYU Lucheng, HAN Tao. Artificial Intelligence Empowers Library and Information Service ——Review of Forums about Information Technology for Library 2019 [J]. Journal of Library and Information Science in Agriculture, 2020, 32(5): 13-18.
[11] YANG Liuqing. Application of Artificial Intelligence in Digital Microfilming [J]. Journal of Library and Information Science in Agriculture, 2020, 32(4): 59-67.
[12] MA Xiaoyue, XUE Pengzhen. The Cross-integration Development Path of Information Science and Communication Science in the Background of Artificial Intelligence and Big Data [J]. Journal of Library and Information Science in Agriculture, 2020, 32(3): 37-43.
[13] WANG Ying, HU Zhenning. Current Status and Prospects of Domestic Precision Service Research [J]. Agricultural Library and Information, 2019, 31(8): 4-12.
[14] QIANG Wei. Application of Virtual Reality Technology in Medical University Libraries in the Era of Artificial Intelligence [J]. Agricultural Library and Information, 2019, 31(8): 63-70.
[15] YANG Siluo, YU Yonghao. Comparison of Artificial Intelligence Papers and Books Based on Citation and Altmetric Indicators [J]. Agricultural Library and Information, 2019, 31(5): 5-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!