中文    English

Agricultural Library and Information ›› 2019, Vol. 31 ›› Issue (11): 64-71.doi: 10.13998/j.cnki.issn1002-1248.2019.10.19-0764

• Applied practice • Previous Articles     Next Articles

Research on Behavior Characteristics and Influencing Factors of E-commerce Users' Timely Feedback

FAN Wenjie, DENG Weihua   

  1. School of public management, Huazhong Agricultural University, Hubei Wuhan 430000, China
  • Received:2019-08-28 Online:2019-11-05 Published:2019-12-20

Abstract: With the introduction of the concept of web2.0, the concept of UGC (user-generated content) is also deeply rooted in people's mind. Nowadays, various platforms cannot live without UGC. The behavior characteristics of e-commerce users on the platform have a huge impact on consumers themselves, potential consumers, e-commerce platforms and product manufacturers. At present, most of the research on online comments is on the text content, and few researches on the timeliness of users' feedback. Through data crawling software, the commodity comment field and its quantity of Jingdong mall are crawled to study the timely feedback behavior characteristics of e-commerce user comments and the factors affecting these behavior characteristics. The behavior characteristics of e-commerce users' timely feedback are studied by combining charts and graphs, and the feedback time rule is obtained. SPSS was used for regression analysis of the data, and the main influencing factors were obtained. According to the research results, the behavioral characteristics and influencing factors of e-commerce users' timely feedback can be targeted to propose suggestions to platform managers, comment publishers and potential consumers.

Key words: e-commerce users, comments, timely feedback, factors affecting

CLC Number: 

  • G252
[1] 刘玉林,菅利荣.基于文本情感分析的电商在线评论数据挖掘[J].统计与信息论坛,2018,33(12):119-124.
[2] 王伟,王洪伟.特征观点对购买意愿的影响:在线评论的情感分析方法[J].系统工程理论与实践,2016,36(01):63-76.
[3] 张紫琼,叶强,李一军.互联网商品评论情感分析研究综述[J].管理科学学报,2010,13(06):84-96.
[4] 刘晓彤,田大钢.融合深度学习与机器学习的在线评论情感分析[J].软件导刊,2019,18(02):1-4.
[5] 刘宪立,赵昆.在线评论有用性关键影响因素识别研究[J].现代情报,2017,37(01):94-99+105.
[6] 钱敏,肖燕华.网络口碑中追评对消费者感知可信度的影响研究——基于网络口碑传播动机理论[J].商业经济研究,2017(22):53-56.
[7] 王长征,何钐,王魁.网络口碑中追加评论的有用性感知研究[J].管理科学,2015,28(03):102-114.
[8] 张艳丰,李贺,彭丽徽,陈远方.基于模糊神经网络的在线评论效用分类过滤模型研究[J].情报科学,2017,35(5): 94-99,131.
[9] 邓卫华,张宇.在线评论信息内容对阶段性有用性评价的影响研究[J].情报理论与实践,2018,41(8):90-95,153.
[10] 张鑫,朱振中.在线评论有用性影响因素研究综述[J].商业经济研究,2017(17):82-84.
[11] 徐雪娟,郭进利,何静.网络购物行为的人类动力学模式[J].复杂系统与复杂性科学,2013,10(04):69-75.
[12] 龚雪. 在线初次评论与在线追加评论的比较研究[D].北京邮电大学,2016.
[13] 李良强. 于内容挖掘的在线用户评论时间特征及其影响研究[D].电子科技大学,2016.
[14] 胡常春,宁昌会.在线追评何时比初评更有用?——基于时间间隔和产品类型的调节效应分析[J].预测,2017,36(04):36-42.
[15] 张艳丰,彭丽徽,洪闯.在线用户追评行为时间序列关联特征实证研究——以京东商城手机评论数据为例[J].情报理论与实践,2019,42(03):139-145.
[16] 邓卫华,易明.考虑口碑衰竭效应时追加评论对网络口碑传播的影响研究[J].管理学报,2019,16(04):595-602.
[17] 张璇. 基于动机理论的消费者正面网络口碑传播影响因素研究[J].商场现代化,2018(05):7-8.
[18] F D Davis.Perceived Usefulness,Perceived Ease of Use,and Us-er Acceptance of Information Technology[J].MIS Quarterly,1989,13(3): 319-340.
[19] 李良强. 基于内容挖掘的在线用户评论时间特征及其影响研究[D].电子科技大学,2016.
[20] Hu N,Zhang J,Pavlou P A.Overcoming the J-shaped Distribu-tion of Product Reviews[J].Communications of the ACM,2009,52(10):144-147.
[1] LI Xiangmin, XU Su, CHEN Xin, TANG Xiaoyan, TAO Wenqi, WANG Changqun. Manuscript Handling Based on the Peer Review Comments:Cases Analysis [J]. , 2017, 29(12): 159-163.
[2] YANG Qian-jin. Factors Affecting the Form and Development of the Public Library Collection Features Analysis [J]. , 2015, 27(5): 75-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!