Agricultural Library and Information ›› 2019, Vol. 31 ›› Issue (4): 4-18.doi: 10.13998/j.cnki.issn1002-1248.2019.04.19-0150
• Special review • Next Articles
WANG Ting1,2, CUI Yunpeng1,2, WANG Jian1,2, LIU Tingting1,2, WANG Mo1,2
CLC Number:
[1] Marg E.DESCARTES' ERROR: emotion, reason, and the human brain[J]. Optometry and Vision Science. 1995, 72(11): 847-848. [2] Preissl, R., et al.Compass: A scalable simulator for an architecture for cognitive computing[C]. in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE Computer Society Press. 2012:1-11. [3] Wang Y.Towards the synergy of cognitive informatics, neural informatics, brain informatics, and cognitive computing[J]. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2011,5(1):75-93. [4] Modha, D.S., et al.Cognitive computing[J]. Communications of the ACM. 2011,54(8): 62-71. [5] Nahamoo D.Cognitive computing journey[C]. in Proceedings of the first workshop on Parallel programming for analytics applications. ACM. 2014. [6] Li, J., et al.Concept learning via granular computing: a cognitive viewpoint[J]. Information Sciences. 2015, (298): 447-467. [7] Raghavan, V.V., et al., Cognitive computing: Theory and applications[M]. Elsevier. 2016, 35. [8] Banavar, G. and M. Cooper. Turing Lecture 2017 Cognitive Computing[J]. ITNOW. 2016, 58(4): 62-63. [9] Reynolds, H. and S. Feldman. Cognitive computing: Beyond the hype[J]. KM World. 2014, 27. [10] Frankish, K. and W. Ramsey. The Cambridge handbook of cognitive science[M]. Cambridge University Press.. 2012. [11] Friedenberg, J. and G. Silverman. Cognitive science: An introduction to the study of mind[M]. Sage. 2011. [12] Hurwitz J.S.,M. Kaufman, and A. Bowles. Cognitive computing and big data analytics[M]. John Wiley & Sons. 2015. [13] Gupta, S., et al.Big data with cognitive computing: a review for the future[J]. International Journal of Information Management. 2018, 42:78-89. [14] Langley P.,J.E. Laird, and S. Rogers. Cognitive architectures: Research issues and challenges[J]. Cognitive Systems Research. 2009, 10(2): 141-160. [15] Anderson J.R.The architecture of cognition[M]. Psychology Press.. 2013. [16] Anderson J.R.ACT: A simple theory of complex cognition[J]. American psychologist. 1996, 51(4): 355. [17] Lehman J.F.,J.E. Laird, and P. Rosenbloom. A gentle introduction to Soar, an architecture for human cognition[J]. Invitation to cognitive science. 1996, 4: 212-249. [18] Lehman J.F.,J. Laird, and P. Rosenbloom. A gentle introduction to soar, an architecture for human cognition: 2006 update[J]. University of Michigan. 2006, 1-37. [19] Card S.K.The psychology of human-computer interaction[M]. CRC Press.. 2018. [20] Flusberg, S.J. and J.L. McClelland. Connectionism and the emergence of mind[M]. The Oxford Handbook of Cognitive Science. 2014, 10. [21] Goldberg Y.A primer on neural network models for natural language processing[J]. Journal of Artificial Intelligence Research. 2016, 57:345-420. [22] Mundy, A., et al.An efficient SpiNNaker implementation of the neural engineering framework[C]. in 2015 International Joint Conference on Neural Networks (IJCNN). IEEE. 2015. [23] Eliasmith, C., et al.A large-scale model of the functioning brain[J]. Science. 2012, 338(6111): 1202-1205. [24] Eliasmith C.How to build a brain: A neural architecture for biological cognition [M]. Oxford University Press.. 2013. [25] Balduzzi D.Semantics, Representations and Grammars for Deep Learning[J]. Computer Science, 2015. [26] George, D. and J. Hawkins. A hierarchical Bayesian model of invariant pattern recognition in the visual cortex[C]. in Proceedings. 2005 IEEE International Joint Conference on Neural Networks. IEEE. 2005. [27] Snaider J.,R. McCall, and S. Franklin. The LIDA framework as a general tool for AGI[C]. in International Conference on Artificial General Intelligence. Springer. 2011. [28] Franklin, S., et al.LIDA: A systems-level architecture for cognition, emotion, and learning[J]. IEEE Transactions on Autonomous Mental Development. 2014, 6(1): 19-41. [29] Rosenbloom P.S.The Sigma cognitive architecture and system[J]. AISB Quarterly. 2013, 136:4-13. [30] Porreca, S., et al.Accessing Government Open Data Through Chatbots[C]. in International Conference on Web Engineering. Springer. 2017. [31] Ferrucci, D., et al.Building Watson: An overview of the DeepQA project[J]. AI magazine. 2010, 31(3):59-79. [32] Rice K.L.,T.M. Taha, and C.N. Vutsinas. Scaling analysis of a neocortex inspired cognitive model on the Cray XD1[J]. The Journal of Supercomputing. 2009, 47(1):21-43. [33] Chang A, Monroe W, Savva M, et al.Text to 3D Scene Generation with Rich Lexical Grounding[J]. Computer Science, 2015. [34] Kelly III, J.E. and S. Hamm. Smart machines: IBM's Watson and the era of cognitive computing[M]. Columbia University Press.. 2013. [35] Demchenko Y.,C. De Laat, and P. Membrey. Defining architecture components of the Big Data Ecosystem[C]. in 2014 International Conference on Collaboration Technologies and Systems (CTS). IEEE. 2014. [36] LeCun, Y., Y. Bengio, and G. Hinton. Deep learning[J]. Nature. 2015, 521(7553):436. [37] Tian, Y., et al.A formal knowledge representation system (FKRS) for the intelligent knowledge base of a cognitive learning engine[J]. International Journal of Software Science and Computational Intelligence (IJSSCI). 2011, 3(4): 1-17. [38] Wang Y.On concept algebra: A denotational mathematical structure for knowledge and software modeling[J]. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI). 2008, 2(2):1-19. [39] Wang Y.The real-time process algebra (RTPA)[J]. Annals of Software Engineering. 2002, 14(1-4): 235-274. [40] ElBedwehy, M.N., et al. A computational knowledge representation model for cognitive computers[J]. Neural Computing and Applications. 2014, 25(7-8):1517-1534. [41] Xiao, T. and S. Lan. Knowledge Reduction based on Cognitive Model of Granular Computing[J]. Advances in Information Sciences and Service Sciences. 2013, 5(6):733. [42] Pena-Ayala, A. and R. Mizoguchi. Intelligent decision-making approach based on fuzzy-causal knowledge and reasoning[C]. in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Springer. 2012. [43] Heckerman, D. and R. Shachter. Decision-theoretic foundations for causal reasoning[J]. Journal of Artificial Intelligence Research. 1995, 3:405-430. [44] Zadeh L A .Fuzzy logic = computing with words[M]. Computing with Words in Information/Intelligent Systems 1. Physica-Verlag HD, 1999. [45] Eden C.On the nature of cognitive maps[J]. Journal of management studies. 1992, 29(3):261-265. [46] Wang Y.On denotational mathematics foundations for the next generation of computers: Cognitive computers for knowledge processing[J]. Journal of Advanced Mathematics and Applications. 2012, 1(1):121-133. [47] Wang Y.Inference algebra (IA): A denotational mathematics for cognitive computing and machine reasoning (I)[J]. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI). 2011, 5(4):61-82. [48] Arthur, J.V., et al.Building block of a programmable neuromorphic substrate: A digital neurosynaptic core[C]. in the 2012 international joint conference on Neural networks (IJCNN). IEEE. 2012. [49] Imam, N., et al.A digital neurosynaptic core using event-driven qdi circuits[C]. in 2012 IEEE 18th International Symposium on Asynchronous Circuits and Systems. IEEE. 2012. [50] Merolla, P., et al.A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm[C]. in 2011 IEEE custom integrated circuits conference (CICC). IEEE. 2011. [51] Esser, S.K., et al.Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores[C]. in The 2013 International Joint Conference on Neural Networks (IJCNN). IEEE. 2013. [52] Yelick, K., et al.Productivity and performance using partitioned global address space languages[C]. in Proceedings of the 2007 international workshop on Parallel symbolic computation. ACM. 2007. [53] Merolla, P.A., et al.A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science. 2014, 345(6197):668-673. [54] Amir, A., et al.Cognitive computing programming paradigm: a corelet language for composing networks of neurosynaptic cores[C]. in The 2013 International Joint Conference on Neural Networks (IJCNN). IEEE. 2013. [55] Djurfeldt M.The connection-set algebra—a novel formalism for the representation of connectivity structure in neuronal network models[J]. Neuroinformatics. 2012, 10(3):287-304. [56] Djurfeldt M.The Connection-set Algebra: a formalism for the representation of connectivity structure in neuronal network models, implementations in Python and C++, and their use in simulators[J]. BMC neuroscience. 2011, 12(1):80. [57] Lawniczak, A.T. and B.N. Di Stefano, Computational intelligence based architecture for cognitive agents[J]. Procedia Computer Science. 2010, 1(1):2227-2235. [58] ANDERSON, I.R. and B.I. REISER, THE LISP TUTGR[M]. 1985. [59] Koedinger, K.R., et al.Intelligent tutoring goes to school in the big city[J]. International Journal of Artificial Intelligence in Education (IJAIED). 1997, 8:30-43. [60] Seo, M., et al.Solving geometry problems: Combining text and diagram interpretation[C]. in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015. [61] Matsuda, N., et al.Cognitive anatomy of tutor learning: Lessons learned with SimStudent[J]. Journal of Educational Psychology. 2013, 105(4):1152. [62] Zadrozny W.W.,V. de Paiva, and L.S. Moss. Explaining watson: polymath style[C]. in Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015. [63] Martinez P.,H. Bakardjian, and A. Cichocki. Multi-command real-time brain machine interface using SSVEP: feasibility study for occipital and forehead sensor locations[C]. in Advances in Cognitive Neurodynamics ICCN 2007. 2008, 783-786. [64] Negueruela, C., et al.Brain-computer interfaces for space applications[J]. Personal and Ubiquitous Computing. 2011, 15(5):527-537. [65] Hua X.-S.,M. Ye, and J. Li. Mining knowledge from clicks: MSR-Bing image retrieval challenge[C]. in 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). IEEE. 2014. [66] Bai, Y., et al.Bag-of-words based deep neural network for image retrieval[C]. in Proceedings of the 22nd ACM international conference on Multimedia. ACM. 2014. [67] Dong J.,X. Li, and C.G. Snoek,Word2VisualVec: Cross-media retrieval by visual feature prediction[J]. arXiv preprint arXiv:1604.06838, 2016. [68] Orozco H.,D. Thalmann, and F. Ramos. Making empathetic virtual humans in human-computer interaction scenarios[C]. in Proc. of the 11th Computer Graphics International. 2010. [69] Costa, P.T. and R.R. McCrae. Normal personality assessment in clinical practice: The NEO Personality Inventory[J]. Psychological assessment. 1992, 4(1):5. [70] Ekman P.,W.V. Friesen, and P. Ellsworth. Emotion in the human face: Guidelines for research and an integration of findings[M]. Elsevier. 2013, 11. [71] Wang Y.Cognitive informatics: towards future generation computers that think and feel[C]. in 2006 5th IEEE International Conference on Cognitive Informatics. IEEE. 2006. [72] Cambria, E., et al.Sentic blending: Scalable multimodal fusion for the continuous interpretation of semantics and sentics[C]. in 2013 IEEE symposium on computational intelligence for human-like intelligence (CIHLI). IEEE. 2013. [73] Agarwal, A., et al.Cognitive compliance for financial regulations[J]. IT Professional. 2017, 19(4):28-35. [74] Tarafdar M.,C. Beath, and J. Ross. Enterprise cognitive computing applications: Opportunities and challenges[J]. IT Professional. 2017. [75] 章璐杰. 基于物联网的智慧葡萄园管理系统的优化研究[D].浙江大学,2017. [76] 濮永仙. 物联网智能农业系统在瓜果生产中的应用研究[J]. 科技广场. 2016(1):92-97. |
|