Journal of Library and Information Science in Agriculture ›› 2023, Vol. 35 ›› Issue (12): 49-59.doi: 10.13998/j.cnki.issn1002-1248.23-0813
Previous Articles Next Articles
ZHANG Jiyang1,2, ZHANG Peng1,*, GONG Siyu3, SONG Naipeng1
CLC Number:
[1] 杨金春, 崔展豪. “网络水军” 社会危害分析及治理方法研究[J]. 法制与社会, 2016(16): 161-162. YANG J C, CUI Z H.Analysis of social harm of "network water army" and research on governance methods[J]. Legal system and society, 2016(16): 161-162. [2] 莫倩, 杨珂. 网络水军识别研究[J]. 软件学报, 2014, 25(7): 1505-1526. MO Q, YANG K.Overview of web spammer detection[J]. Journal of software, 2014, 25(7): 1505-1526. [3] MCCORD M, CHUAH M.Spam detection on twitter using traditional classifiers[C]//International Conference on Autonomic and Trusted Computing. Berlin, Heidelberg: Springer, 2011: 175-186. [4] 尹鹏飞. “网络水军” 危害治理研究[J]. 法制与经济, 2023, 32(S1): 129-136. YIN P F.Research on hazard control of "network water army"[J]. Legal and economy, 2023, 32(S1): 129-136. [5] 李岩, 邓胜春, 林剑. 社交网络水军用户的动态行为分析及在线检测[J]. 计算机工程, 2019, 45(8): 287-295. LI Y, DENG S C, LIN J.Dynamic behavior analysis and online detection of spammer user in social network[J]. Computer engineering, 2019, 45(8): 287-295. [6] 程传鹏, 张书钦, 刘小明, 等. 基于特定话题的网络水军识别研究[J]. 中原工学院学报, 2018, 29(4): 64-69. CHENG C P, ZHANG S Q, LIU X M, et al.Research on detection method of online water army based on special topic[J]. Journal of Zhongyuan university of technology, 2018, 29(4): 64-69. [7] 张艳梅, 黄莹莹, 甘世杰, 等. 基于贝叶斯模型的微博网络水军识别算法研究[J]. 通信学报, 2017, 38(1): 44-53. ZHANG Y M, HUANG Y Y, GAN S J, et al.Weibo spammers' identification algorithm based on Bayesian model[J]. Journal on communications, 2017, 38(1): 44-53. [8] GHANEM R, ERBAY H.Context-dependent model for Spam detection on social networks[J]. SN applied sciences, 2020, 2(9): 1587. [9] 杨昊, 吴爱华, 屈青英. 一种基于深度神经网络的水军识别模型[J]. 现代计算机, 2019(18): 24-29. YANG H, WU A H, QU Q Y.A spammer detection model based on deep neural network[J]. Modern computer, 2019(18): 24-29. [10] 杨海梅, 王恒. 国内网络水军识别研究[J]. 网络安全技术与应用, 2021(2): 152-154. YANG H M, WANG H.Research on identification of domestic network water army[J]. Network security technology & application, 2021(2): 152-154. [11] 孙卫强. 基于深度信念网络的网络水军识别研究[D]. 湘潭: 湘潭大学, 2015. SUN W Q.Research of "water army" recongnition based on DBN[D]. Xiangtan: Xiangtan University, 2015. [12] ALHASSUN A S, RASSAM M A.A combined text-based and metadata-based deep-learning framework for the detection of Spam accounts on the social media platform twitter[J]. Processes, 2022, 10(3): 439. [13] 文晓慧. 基于图神经网络的微博水军识别系统的设计与实现[D]. 曲阜: 曲阜师范大学, 2021. WEN X H.Design and implementation of weibo water army identification system based on graph neural network[D]. Qufu: Qufu Normal University, 2021. [14] AL DUHAYYIM M, MESFER ALSHAHRANI H, AL-WESABI F N, et al. Deep learning empowered cybersecurity Spam bot detection for online social networks[J]. Computers, materials & continua, 2022, 70(3): 6257-6270. [15] 王渔樵, 李涛, 肖智婕. 社交网络水军识别的特征评价与选择[J]. 计算机工程与设计, 2019, 40(9): 2440-2445. WANG Y Q, LI T, XIAO Z J.Feature evaluation and selection of social network spammers identification[J]. Computer engineering and design, 2019, 40(9): 2440-2445. [16] 宁新丽, 孙圆. 基于豆瓣网短评的网络水军识别[J]. 统计与咨询, 2022(3): 6-9. NING X L, SUN Y.Network water army identification based on douban network short comment[J]. Statistics and consultation, 2022(3): 6-9. [17] 杨臻, 张明慧, 肖汉. 基于多特征的网络水军识别方法[J]. 激光杂志, 2016, 37(12): 110-113. YANG Z, ZHANG M H, XIAO H.Information entropy based net-work spammers detection method[J]. Laser journal, 2016, 37(12): 110-113. [18] 王烁, 徐健, 刘颖. 网络“水军” 探测方法研究[J]. 现代图书情报技术, 2014(S1): 92-100. WANG S, XU J, LIU Y.Research on detection method of network "water army"[J]. Data analysis and knowledge discovery, 2014(S1): 92-100. [19] 刘云虹. 网络水军的识别与治理[J]. 辽宁警察学院学报, 2017, 19(4): 61-65. LIU Y H.The recognition and management of network navy[J]. Journal of Liaoning police college, 2017, 19(4): 61-65. [20] 王军博. 基于电商评论的网络水军识别[D]. 北京: 北京交通大学, 2016. WANG J B.Review spammers based on E-business review[D]. Beijing: Beijing Jiaotong University, 2016. [21] 杨珂. 电子商务网络水军的智能识别研究[D]. 北京: 北京工商大学, 2015. YANG K.Research on spammer detection in online shopping websites[D]. Beijing: Beijing Technology and Business University, 2015. |
[1] | WANG Sili, ZHANG Ling, YANG Heng, LIU Wei. Review of Deep Learning for Language Modeling [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 4-18. |
[2] | LIU Nanzhu, CUI Yunpeng, WANG Mo. Construction and Application of Semantic Retrieval Model for Ancient Agricultural Literature [J]. Journal of Library and Information Science in Agriculture, 2023, 35(7): 52-62. |
[3] | LU Lina, YU Xiao. Recognition and Classification of Deep Learning in Soybean Leaf Image Data Management [J]. Journal of Library and Information Science in Agriculture, 2023, 35(2): 87-94. |
[4] | HOU Xiangying, CUI Yunpeng, LIU Juan. Applications and Prospect Analysis of Deep Learning in Plant Genomics and Crop Breeding [J]. Journal of Library and Information Science in Agriculture, 2022, 34(8): 4-18. |
[5] | SHI Yunlai, CUI Yunpeng, DU Zhigang. A Classification Method of Agricultural News Text Based on BERT and Deep Active Learning [J]. Journal of Library and Information Science in Agriculture, 2022, 34(8): 19-29. |
[6] | MAO Jin, CHEN Ziyang. A Deep Learning Based Approach to Structural Function Recognition of Scientific Literature Abstracts [J]. Journal of Library and Information Science in Agriculture, 2022, 34(3): 15-27. |
[7] | LYU Lucheng, HAN Tao. Artificial Intelligence Empowers Library and Information Service ——Review of Forums about Information Technology for Library 2019 [J]. Journal of Library and Information Science in Agriculture, 2020, 32(5): 13-18. |
[8] | WANG Xuejing. Research on Intelligent Service Mode of Digital Library Based on Deep Learning Technology [J]. , 2018, 30(9): 150-153. |
|