中文    English

Journal of library and information science in agriculture

   

Evolution Mechanism of User's Network Cluster Behavior from the Perspective of Cognitive Bias

REN Fubing1,2, LUO Ya1   

  1. 1. School of Business, East China University of Science and Technology, Shanghai 200237
    2. School of Marxism, East China University of Science and Technology, Shanghai 200237
  • Received:2025-06-17 Online:2025-10-20

Abstract:

[Purpose/Significance] In the era of widespread social media, network cluster behavior has emerged as a significant phenomenon that shapes online public opinion and collective action. Although existing research has thoroughly examined macro-level drivers and developed evolutionary stage models for network cluster behavior, there is still a significant gap in our understanding of the micro-level cognitive mechanisms that dynamically propel its evolution. Cognitive biases, which are inherent tendencies in human cognition, are amplified in online group interactions. This study specifically addresses this gap by adopting a cognitive bias perspective to investigate the evolution mechanism of network cluster behavior. It is crucial to focus on campus hot events as highly relevant and sensitive case studies. These events often involve students, parents, educational institutions, and the wider public, covering core issues such as campus safety, management disputes, teacher-student relations, and student rights. Their inherent emotional resonance, rapid dissemination within specific online communities, and potential for severe damage to reputation and social order necessitate deeper understanding. The core innovation and significance of this research lie in: 1) Systematically integrating cognitive bias theory to analyze the complete lifecycle evolution of network cluster behavior in campus events; 2) Empirically revealing how specific biases dynamically manifest and interact at various stages, shaping the trajectory of network cluster behavior; 3) Providing a richer theoretical framework for network cluster action theory; 4) Offering empirical evidence for formulating targeted governance strategies to mitigate risks associated with campus-related online crises, thereby promoting constructive online discourse and campus stability. [Method/Process] To rigorously investigate the core research question, this study employed the grounded theory methodology. Based on sustained high popularity rankings on the "Zhiwei Shijian" platform, ten representative campus hot events were systematically selected to ensure coverage of diverse campus issues. Extensive datasets of user comments related to these ten events were collected from the Sina Weibo platform, serving as the core empirical foundation. The data collection timeframe spanned the complete lifecycle of each event, from initial emergence to eventual subsidence. Following the grounded theory process, the collected textual data underwent a meticulous three-stage coding procedure to induce and refine textual themes. Through this process, facilitated by qualitative data analysis software, a substantive theoretical model was ultimately constructed. This model delineates the evolutionary path and internal mechanisms of network cluster behavior in campus events under the influence of cognitive biases. The grounded theory method was deemed highly appropriate due to its capacity for deeply exploring complex social processes and emergent phenomena directly from rich, context-specific data. [Results/Conclusions] The study found that the evolution mechanism of network cluster behavior in the context of campus hot topics mainly consists of five stages: public opinion induction, public opinion bias, public opinion diffusion, public opinion outbreak, and public opinion subsidence. Based on these findings, governance strategies for such campus network events have been proposed, including identifying triggering factors, avoiding cognitive biases, enhancing user literacy, promoting collaborative guidance, and mitigating secondary risks.

Key words: online public opinion, collective behavior, campus incidents, cognitive bias, grounded theory, affective computing

CLC Number: 

  • G252.0

Table 1

Basic information of campus hot topic events"

编号 事件 时间
1 成都四十九中林某坠楼 2021.5.9—2021.5.14
2 广州女教师体罚学生致吐血 2020.5.30—2020.6.4
3 太原师范学院校园暴力事件 2019.5.29—2019.6.3
4 华东师范大学粉发女硕士遭网暴自杀 2022.7.14—2023.2.28
5 武汉一小学生校内被撞身亡 2023.5.25—2023.6.4
6 成都七中实验学校食堂安全 2019.3.12—2019.3.21
7 一清华学姐冤枉男生咸猪手 2020.11.19—2020.11.26
8 南大“流产女生”举报事件 2022.11.7—2022.11.14
9 天津助学金事件 2023.11.01—2023.11.21
10 武汉大学生图书馆性骚扰 2023.10.13—2023.10.20

Table 2

Part of the open coding process"

指标 检验策略 使用阶段 具体做法
信度检验 案例研究计划 研究设计 在研究启动前,多位研究者共同讨论,达成一致的研究方案
严谨的程序 研究设计 按照扎根理论的案例研究方法,严格遵循规范步骤进行
建立数据库 数据收集 构建案例资料库,依据内容及来源渠道等进行分类整理
重复实施

数据编码

数据分析

各研究者分别对比分析案例数据,随后通过讨论达成共识
分析信度 数据检验 对3位成员的内容分析进行相互同意度检验,并计算其分析信度
构建效度 多元证据来源 数据收集 通过爬虫工具等手段收集微博上的相关评论
形成完整证据链

数据编码

数据分析

评论收集-语句甄别-标签分类-初始概念-子范畴-主范畴-核心范畴-理论模型
编码审核 数据编码 理论饱和度检验
内在效度 建立解释 数据分析 通过案例数据的分析,验证理论命题是否与实际数据相符

分析对立的

竞争性解释

数据分析 多名研究者先提出各自的解释,针对已有的解释寻找相反的证据,最后对原解释进行审核与修正
外在效度 理论指导 研究设计 利用理论指导进行研究
案例研究 研究设计 通过所搜集的案例为研究提供数据
文献比较 理论贡献 与既有的文献理论展开对比分析

Table 3

Open coding results"

范畴化 初始概念
A1网络环境氛围特点 a1网络隐私暴露问题、a2舆论易爆发环境、a3舆论施压情形、a4网络维权案例
A2现实环境氛围特点 a5不满现实社会、a6社会竞争激烈、a7信息信任缺失、a8社会风气浮躁
A3事件议题特殊性 a9性别对立、a10校园霸凌、a11名校更吸引眼球、a12性骚扰、a13助学金不公、a14职业敏感、a15事件反转
A4当事主体争议行为 a16不合理要求、a17与被爆事件不相符行为
A5学校不当处理过程 a18学校处理方式差、a19学校人员不负责、a20审查过程不公正、a21学校压制网络言论
A6当事人信息偏差 a22当事人选择性公开信息、a23当事人制造谣言博眼球、a24当事人态度引发抨击、a25涉及当事人的虚假信息
A7学校信息偏差 a26隐瞒压制事实、a27学校选择性回应、a28学校回应态度影响言论、a29学校回应方式落后
A8信息素养 a30个人教育背景、a31个人阅历、a32道德素养
A9认知思维 a33刻板印象、a34框架效应、a35确认偏差、a36首因效应、a37从众效应、a38归纳偏差、a39传统偏见、a40关注点偏离、a41随意定性事件
A10心理驱动 a42仇富心理、a43发泄私愤、a44共情力弱、a45心理阴暗、a46代入自我、a47夸大自我发声力量
A11媒体引导偏差 a48利益驱使、a49信息误导、a50职业素养不足
A12意见领袖引导 a51煽动言论、a52制造谣言、a53引导热点争议
A13境外势力引导 a54恶意引导
A14情绪态度 a55支持共情、a56反对意见、a57担忧后续、a58愤怒情绪、a59质疑心态、a60讽刺跟风言论、a61警惕中立、a62反转后的失望态度、a63感到惋惜
A15行为举动 a64人肉搜索、a65言语辱骂、a66鼓动扩大舆论、a67揣测行为、a68引申类似事件
A16平台治理 a69平台治理制度不完善、a70平台举报制度执行力弱、a71热搜压制行为
A17政府治理 a72舆论纠偏不到位、a73治理能力不足、a74回应事件方式落后、a75舆论应对机制不完善、a76未听取民众声音
A18媒体纠偏 a77媒体未发声
A19部门处罚 a78网暴惩罚力度轻、a79部分造谣人员未得到处理、a80部分造谣人员所受处罚轻
A20舆论偏差后果 a81学校信任度降低、a82政府公信力降低、a83上升更多社会问题、a84对法律持消极态度、a85学校形象损害、a86连锁负面效应
A21发声反思 a87网民反思自我、a88思考意见领袖发声的正负面影响、a89呼吁理性独立思考
A22当事主体建议 a90号召支持行动、a91减少信息暴露、a92建议被网暴者屏蔽信息
A23学校管理提议 a93学校完善策略流程、a94加强学校舆论应对、a95完善学校监控系统
A24网络管理提议 a96网络实名制、a97网暴整治提议

Table 4

Axial coding results"

主范畴 子范畴 子范畴内涵
B1环境氛围 A1网络环境氛围特点 根据校园事件展现出的网络环境氛围
A2现实环境氛围特点 现实社会不良环境氛围
B2议题特殊 A3事件议题特殊性 校园事件具有的议题争议点
B3校园主体不当行为 A4当事主体争议行为 当事人做出的引发争议的行为
A5学校不当处理过程 学校在事件发生过程中的不当处理行为
B4校园主体信息偏差 A6当事人信息偏差 当事人主动或被动造成的信息偏差
A7学校信息偏差 学校方面造成的信息偏差
B5用户认知偏差 A8信息素养 用户个人在教育、道德、阅历方面的素养情况
A9认知思维 用户认知思维层面存在的偏差情况
A10心理驱动 用户心理层面造成舆论偏差的驱动因素
B6高影响力者引导偏差 A11媒体引导偏差 媒体在校园事件中引导的信息偏差
A12意见领袖引导 意见领袖在校园事件中引导的信息偏差
A13境外势力引导 境外势力在校园事件中引导的信息偏差
B7用户情绪行为 A14情绪态度 用户对校园事件的情绪态度
A15行为举动 用户对于校园事件做出的网络行为,如人肉搜索、鼓动舆论等
B8事件治理 A16平台治理 微博平台在网络事件中体现的治理制度和行为
A17政府治理 政府在校园事件中体现的治理机制和行为
A18媒体纠偏 媒体在校园事件中未进行正向发声引导
A19部门处罚 部门对于校园网络事件的处罚行为和程度
B9偏差后果 A20舆论偏差后果 舆论偏差在校园事件中产生的负面后果
B10经验建议 A21发声反思 网络各参与主体对于事件所产生的不同反思情形
A22当事主体建议 用户针对校园网络事件当事人所给出的建议
A23学校管理提议 用户针对学校提出的管理提议
A24网络整治提议 用户针对网络提出的整治提议

Table 5

Selective coding results"

核心范畴 主范畴
C1舆情诱发 B1环境氛围
B2议题特殊
B3校园主体不当行为
C2舆情偏差 B4校园主体信息偏差
B5用户认知偏差
B6高影响力者引导偏差
C3舆情扩散 B7用户情绪行为
C4舆情爆发 B8事件治理
C5舆情平息 B9偏差后果
B10经验建议

Fig.1

Evolutionary model of online collective behavior based on cognitive bias"

[1]
中国互联网络信息中心(CNNIC). 第53 次中国互联网络发展状况统计报告[EB/OL]. (2024-03-29)[2024-05-11].
[2]
靖鸣. 风险感知与行为阈限: 传播风险特征、成因及防范策略[J]. 西北师大学报(社会科学版), 2023, 60(3): 96-104.
JING M. Risk perception and behavior thresholds: Features, causes, and prevention strategies of dissemination risk[J]. Journal of northwest normal university (social sciences), 2023, 60(3): 96-104.
[3]
林玮, 王博源. 智能互联时代的基础教育网络舆情治理[J]. 教学与管理, 2024(7): 6-10.
LIN W, WANG B Y. Network public opinion governance of basic education in era of intelligent Internet[J]. Journal of teaching and management, 2024(7): 6-10.
[4]
杜骏飞, 魏娟. 网络集群的政治社会学: 本质、类型与效用[J]. 东南大学学报(哲学社会科学版), 2010, 12(1): 43-50, 124.
DU J F, WEI J. The political sociology of Internet collective behavior: Essence, type and utility[J]. Journal of southeast university (philosophy and social science), 2010, 12(1): 43-50, 124.
[5]
李根强, 刘莎, 张亚楠, 等. 信息熵理论视角下网络集群行为主体的观点演化研究[J]. 情报科学, 2020, 38(1): 42-47, 86.
LI G Q, LIU S, ZHANG Y N, et al. Research on the opinion evolution in online collective behavior from the perspective of information entropy[J]. Information science, 2020, 38(1): 42-47, 86.
[6]
乐国安, 薛婷, 陈浩. 网络集群行为的定义和分类框架初探[J]. 中国人民公安大学学报(社会科学版), 2010, 26(6): 99-104.
LE G A, XUE T, CHEN H. On the definition and classification framework of network cluster behavior[J]. Journal of Chinese people's public security university (social sciences edition), 2010, 26(6): 99-104.
[7]
陈宇, 张丽, 王洛忠. 网络时代邻避集群行为演化机理: 基于信息茧房的分析[J]. 中国行政管理, 2021(10): 106-114.
CHEN Y, ZHANG L, WANG L Z. Mechanism for evolution of NIMBY behavior in the Internet age: Analysis based on information cocoon[J]. Chinese public administration, 2021(10): 106-114.
[8]
李根强, 方从慧. 复杂网络视角下网络集群行为主体的观点演化研究[J]. 情报科学, 2017, 35(5): 125-131.
LI G Q, FANG C H. The opinion evolution mechanism of online collective behavior subject from the perspective of complex networks[J]. Information science, 2017, 35(5): 125-131.
[9]
周蓉. 自媒体时代大学生网络集群行为的特征、风险及控制策略[J]. 高教探索, 2021(8): 117-121.
ZHOU R. Characteristics, risks and control strategies of college students' network cluster behavior in the media era[J]. Higher education exploration, 2021(8): 117-121.
[10]
卜建华, 高菲菲. 青年网络民族主义参与过程中的网络集群行为研究[J]. 思想教育研究, 2018(3): 136-139.
BU J H, GAO F F. Research on the network cluster behavior in the participation of youth network nationalism[J]. Studies in ideological education, 2018(3): 136-139.
[11]
冉连, 曾天飏. 大数据背景下网络集群行为生成机理研究[J]. 情报杂志, 2023, 42(5): 129-136.
RAN L, ZENG T Y. Research on the generation mechanism of online cluster behavior under the background of big data[J]. Journal of intelligence, 2023, 42(5): 129-136.
[12]
陈相雨, 丁柏铨. 抗争性网络集群行为的情感逻辑及其治理[J]. 中州学刊, 2018(2): 166-172.
CHEN X Y, DING B Q. The emotional logic and governance of online collective resistant behaviors[J]. Academic journal of Zhongzhou, 2018(2): 166-172.
[13]
李婧. 代际健康冲突信息行为成因及其在社会控制中的作用机制研究[J]. 农业图书情报学报, 2023, 35(5): 74-88.
LI J. Causes of intergenerational conflict heath information behavior and its mechanism in social control in the context of public health emergencies[J]. Journal of library and information science in agriculture, 2023, 35(5): 74-88.
[14]
田文强. 对政府回应的公众认知偏差及其对负面舆情的影响: 基于离婚冷静期的微博大数据分析[D]. 上海: 上海社会科学院, 2022.
TIAN W Q. The public perception bias of government response and its impact on negative public opinion[D]. Shanghai: Shanghai Academy of Social Sciences, 2022.
[15]
李明德, 邝岩. 大数据背景下的网络舆情认知偏差: 表征、成因与应对[J]. 西南民族大学学报(人文社会科学版), 2023, 44(5): 138-143.
LI M D, KUANG Y. Cognitive bias of Internet public opinion under the background of big data: Representation, causes and countermeasures[J]. Journal of southwest Minzu University (humanities and social sciences edition), 2023, 44(5): 138-143.
[16]
阳长征. 突发事件中网络社会资本对受众认知偏差的影响研究: 基于信息级联的中介效应视角[J]. 情报杂志, 2021, 40(2): 123-130, 110.
YANG C Z. Research of effect of social capital on cognitive bias in network emergency[J]. Journal of intelligence, 2021, 40(2): 123-130, 110.
[17]
吴华, 于海英, 闫冬. 危机事件中意见领袖情绪框架对受众认知偏差的影响研究[J]. 情报杂志, 2022, 41(7): 124-130, 90.
WU H, YU H Y, YAN D. A study on the impact of opinion leader's emotional framework on audience cognitive bias in crisis events[J]. Journal of intelligence, 2022, 41(7): 124-130, 90.
[18]
黄传超, 胡斌, 闫钰炜, 等. 网络暴力下突发事件中观点决策与舆情反转[J]. 管理工程学报, 2019, 33(1): 252-258.
HUANG C C, HU B, YAN Y W, et al. How opinion decision influence public opinion reversion under cyber-violence[J]. Journal of industrial engineering and engineering management, 2019, 33(1): 252-258.
[19]
GLASER B G, STRAUSS A L. The Discovery of Grounded Theory: Strategies for Qualitative Research[M]. New York: Aldine Pub. Co, 1967: 1-30.
[20]
许云斐, 周德良. 突发公共卫生事件网络舆论风险影响因素研究[J]. 甘肃社会科学, 2021(4): 44-51.
XU Y F, ZHOU D L. Study on influencing factors of network public opinion risk in public health emergencies[J]. Gansu social sciences, 2021(4): 44-51.
[21]
严贝妮, 陈秀娟. 情报失察中的个体认知偏差成因分析[J]. 情报杂志, 2012, 31(9): 1-5, 10.
YAN B N, CHEN X J. Factors analysis of individual cognitive biases in intelligence failure[J]. Journal of intelligence, 2012, 31(9): 1-5, 10.
[22]
陈相光, 李辉. 政治信息认知偏差分析[J]. 河南师范大学学报(哲学社会科学版), 2011, 38(1): 37-40.
CHEN X G, LI H. About the cognitive bias of political information[J]. Journal of Henan normal university, 2011, 38(1): 37-40.
[23]
谷永鑫, 张瑜. 论网络空间的道德治理[J]. 思想理论教育, 2021(11): 83-87.
GU Y X, ZHANG Y. On the moral governance of cyberspace[J]. Ideological & theoretical education, 2021(11): 83-87.
[24]
晏晓娟. 政府回应机制的创新: 从回应性到回应力[J]. 重庆社会科学, 2015(4): 13-17.
YAN X J. Innovation of the government response mechanism: From responsiveness to responsibility[J]. Chongqing social sciences, 2015(4): 13-17.
[1] Jia XU. The Optimization Path of VR Red Resource Reading Style under the Embodied Cognition: An Exploratory Study Based on Grounded Theory [J]. Journal of library and information science in agriculture, 2024, 36(11): 33-46.
[2] ZHANG Hongping. Promotion Mechanism of User Demand to Library Literature Resource Construction, Management and Service: Based on Grounded Theory [J]. Journal of library and information science in agriculture, 2022, 34(9): 95-103.
[3] GUO Weijia. Influencing Factors of Artificial Intelligence Readiness in Libraries [J]. Journal of library and information science in agriculture, 2022, 34(5): 47-56.
[4] LYU Kun, CHEN Yaoyao, XIANG Minhao. Influencing Factors of Sina Weibo Information Service Quality from the Perspective of Users: Exploratory Analysis Based on Grounded Theory [J]. Journal of library and information science in agriculture, 2022, 34(10): 70-81.
[5] LI Chao, LIU Zijie, LIU Ahui, ZHU Xuekun, FAN Zhenjia. The Modeling of the Formation Mechanism of Consumer Intention in Short Video Marketing [J]. Journal of library and information science in agriculture, 2020, 32(10): 35-46.
[6] ZHANG Wenliang, FEI Kefan, MA Yi. Grounded Theory Research on the Psychological Influence Factors of Digital Youth Internet Reading [J]. Journal of library and information science in agriculture, 2019, 31(12): 23-31.
[7] Li Shuping. Research on the Influence Factors of Performance of the Start-up Enterprises in College Makerspace Based on Grounded Theory [J]. Journal of library and information science in agriculture, 2018, 30(8): 78-81.
[8] JIN Zelong. The Prediction Management of Online Public Opinions Based on the Theory of Grey System [J]. Journal of library and information science in agriculture, 2017, 29(12): 10-14.
[9] ZHOU Shu-yi. Analysis on the Influential Factors for the Positive Development of Online Public Opinion [J]. Journal of library and information science in agriculture, 2016, 28(9): 84-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!