中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (4): 94-107.doi: 10.13998/j.cnki.issn1002-1248.25-0170

Previous Articles    

Interdisciplinary Integration and Curricular Innovation in Data Science Degree Programs: An Empirical Study of Eight U.S. iSchools

LIU Han   

  1. The Library of Chang'an University, Xi'an 710064
  • Received:2025-02-21 Online:2025-04-05 Published:2025-06-25

Abstract:

[Purpose/Significance] The confluence of digital transformation and the Fourth Industrial Revolution has driven the emergence of data science as an interdisciplinary field. Data science leverages structured and unstructured data to discover knowledge and support decision-making, thereby reshaping research paradigms in information science, computer science, and the social sciences. This study focuses on the development of data science degree programs within member institutions of the iSchools Consortium, a global alliance of information schools. Through systematic empirical investigation, the study aims to unveil innovative features in the program's disciplinary positioning, curriculum architecture, and talent cultivation models. This research aims to inform global information science education institutions on how to optimize their disciplinary strategies and curricular designs for data science. Ultimately, this will address the challenges of knowledge system reconstruction and talent development iteration within the traditional library and information science (LIS) discipline amid its digital transformation. [Method/Process] This study employed a web-based survey and content analysis methodology to create a multi-dimensional analytical framework based on the 2023 iSchools Consortium membership directory. Using a stratified sampling approach that integrated disciplinary influence, as measured by the QS World University Rankings, and program maturity indicators, including curriculum comprehensiveness and industry partnership networks, eight representative U.S. higher education institutions were selected as core samples. A systematic empirical investigation was conducted to thoroughly analyze the current landscape of data science degree programs. The study focused on four critical dimensions: 1) degree-awarding structures such as degree types, concentration specializations, and accreditation standards; 2) credentialing ecosystems such as micro-credentials, stackable certificates, and non-degree pathways; 3) curricular architectures such as core course clusters, elective modules, and interdisciplinary integration mechanisms; and 4) career trajectory outcomes, such as sectoral distribution, occupational roles, and industry-specific skill premiums. [Results/Conclusions] The study summarizes the current state of data science discipline education in international iSchools from several perspectives, including the characteristics of degree program offerings, the reconstruction of disciplinary positioning, pathways for curriculum integration, and insights into employment trends. Based on this, it makes recommendations for developing China's domestic data science discipline. These recommendations include optimizing the disciplinary layout, innovating the curriculum system, and deepening industry-education integration. However, it should be noted that this research is constrained by its small sample size of eight institutions and its geographical scope, which is limited to the United States. In the future, the study could expand to encompass members of the European iSchools consortium, such as the iSchool at University College London and the iSchool at Humboldt University in Berlin, as well as emerging data science programs in the Asia-Pacific region. Through cross-national comparative analysis, it aims to reveal how culture, policies, and industrial ecosystems impact disciplinary development differently. Furthermore, the study could incorporate Learning Analytics technology to model learner behavior in data science courses offered on MOOC platforms, such as Coursera and edX. This would facilitate the refinement of course module granularity and adaptability to better meet learners' needs.

Key words: data science, data science degree, library and information science(LIS), iSchools, data literacy

CLC Number: 

  • G643

Table 1

Data science degrees conferred by universities offering ALA-accredited LIS programs"

大学名称 学院名称 学位名称
北德克萨斯大学 信息学院 数据科学学士
数据科学硕士
德雷塞尔大学 计算机与信息学院 数据科学学士
经济学和数据科学学士
数据科学硕士
密歇根大学 信息学院 应用数据科学理学硕士
雪城大学 信息研究学院 应用数据科学理学硕士
亚利桑那大学 信息学院 数据科学硕士
印第安纳大学-普渡大学 信息与计算机学院 应用数据科学理学硕士
数据科学博士
伊利诺伊大学 信息科学学院 信息科学与数据科学学士
匹兹堡大学 计算机与信息学院 数据科学学士

Table 2

Data science degrees, minors, and concentrations conferred by U.S. iSchools member institutions"

大学名称 学位 学位名称 辅修专业 副修专业
印第安纳大学-普渡大学 博士 数据科学博士 数据科学 ---
北德克萨斯大学 硕士 数据科学硕士 --- ---
德雷塞尔大学 数据科学硕士 应用数据科学、计算数据科学 分析、挖掘与算法、可视化与交流、管理与问责
密歇根大学 应用数据科学理学硕士 --- ---
雪城大学 应用数据科学理学硕士 --- ---
亚利桑那大学 数据科学硕士 --- ---
印第安纳大学-普渡大学 应用数据科学理学硕士 应用数据科学 体育分析、危机信息学、用户体验设计
伊利诺伊大学 学士 信息科学与数据科学学士 --- ---
匹兹堡大学 数据科学学士 --- 计算机系统、数据分析、情境数据科学、数据建模

Table 3

Data science certificates conferred by U.S. iSchools member institutions"

大学名称 证书名称
北德克萨斯大学 数据科学证书
德雷塞尔大学 应用数据科学、应用人工智能和数据科学机器学习证书、大数据分析证书、计算数据科学证书
雪城大学 数据科学证书
亚利桑那大学 数据科学证书、自然语言处理(语言学)证书
密歇根大学 ---
印第安纳大学-普渡大学 ---
伊利诺伊大学 ---
匹兹堡大学 ---

Table 4

Comparative analysis of data science degree programs at U.S. iSchools member institutions"

大学名称 北德克萨斯大学 德雷塞尔大学 密歇根大学 雪城大学 亚利桑那大学 印第安纳大学-普渡大学 伊利诺伊大学 匹兹堡大学
学位名称 数据科学学士 数据科学硕士 数据科学学士 经济学和数据科学学士 数据学科学硕士 应用数据科学硕士 应用数据科学硕士 数据科学硕士 数据科学博士 应用数据科学硕士 信息科学与数据科学学士 数据科学学士
课程数量/个 24 19 16 22 25 34 17 14 8 17 18 9

简介 × × ×
搜索 × × × × ×
数据挖掘 × × × × × × × ×
数据库 × × ×
机器学习 × × × × ×
元数据 × × × × × × × × × ×
方法 × × × × × ×
分析和可视化 ×
实习/毕业设计 × ×
道德与安全 × × × × × ×
用户 × × × × × × × × × ×
人文科学 × × × × × × × × × × ×
政策 × × × × × × × × ×
编辑和管理 × × × × × × × ×

Table 5

Potential career pathways for graduates of data science programs at U.S. iSchools member institutions"

大学名称 学位分类 毕业后可能从事的职业领域
北德克萨斯大学 学士 信息分析师、数据挖掘专家、数据架构师、商业智能开发人员、应用架构师、企业架构师、数据科学家、数据分析师、机器学习专家、业务分析师、数据和分析经理
硕士 未提供
德雷塞尔大学 学士 数据科学家、计算机系统分析师、业务研究分析师、运筹学分析师
联合学士 数据科学家、业务研究分析员、机器学习工程师、应用程序建筑师
硕士 商业智能专家、数据分析师、数据工程师、项目行政人员、统计人员
密歇根大学 硕士 未提供
雪城大学 硕士 未提供
亚利桑那大学 硕士 数据科学家、数据工程师、商业数据分析师、人工智能工程师、机器学习工程师、预测分析专家、市场研究分析师、语言工程师
印第安纳大学-普渡大学 硕士 数据分析师、数据科学家、数据架构师/工程师、数据库管理员、Epic分析师、临床数据分析师、数据工程师-机器学习、云计算数据工程师、企业数据架构师、机器学习工程师/科学家
博士 数据科学家、研究总监、首席数据分析师、战略创新经理、教授
伊利诺伊大学 学士 数据科学家、数据分析师、技术顾问、数据可视化工程师、数据库管理员
匹兹堡大学 学士 数据科学家
1
SHI Y, YU P S, ZHU Y Y, et al. Explore new field of data science under big data era: Preface for ICDS 2014[J]. Procedia computer science, 2014, 30: 1-3.
2
WANG L. Twinning data science with information science in schools of library and information science[J]. Journal of documentation, 2018, 74(6): 1243-1257.
3
Big Data Senior Steering Group. The federal big data research and development strategic plan[J]. Netwoking and information technology research and development, 2016(4): 1-39.
4
肖希明, 田蓉. 我国LIS教育中实践教学的调查分析[J]. 图书情报知识, 2014, 31(1): 18-25.
XIAO X M, TIAN R. Research on practice teaching in LIS education in China[J]. Documentation, information & knowledge, 2014, 31(1): 18-25.
5
ZHU Y Y, XIONG Y. Towards data science[J]. Data science journal, 2015, 14: 8.
6
BRADY H E. The challenge of big data and data science[J]. Annual review of political science, 2019, 22: 297-323.
7
KIM H J, KIM H W. A curriculum study to strengthen AI and data science job competency[J]. Informatization policy, 2021, 28(2): 34-56.
8
吴敏敏, 王鑫钰, 王伟炳. 医学人工智能的技术发展和场景应用[J/OL]. 复旦学报(医学版), 2025: 1-5.
WU M M, WANG X Y, WANG W B. Technological development and scenario applications of medical artificial intelligence[J/OL]. Fudan university journal of medical sciences, 2025: 1-5.
9
江军, 李牧翰. 人工智能金融领域应用伦理风险及其法律治理[J]. 江西财经大学学报, 2025(1): 127-136.
JIANG J, LI M H. Ethical risks and legal governance in the application of artificial intelligence in the financial field[J]. Journal of Jiangxi University of finance and economics, 2025(1): 127-136.
10
张礼华. 美国K-12数据科学教育实践: 理念、模式及启示[J/OL]. 比较教育学报, 2025: 1-11.
ZHANG L H. K-12 data science education practice in the United States: Ideas, models and enlightenments[J/OL]. Journal of comparative education, 2025: 1-11.
11
卢亚辉, 赵雷贺, 蒋宇, 等. 基于JupyterHub的Python教学平台的建设[J]. 工业和信息化教育, 2023(12): 80-84.
LU Y H, ZHAO L H, JIANG Y, et al. Construction of Python teaching platform based on JupyterHub[J]. Industry and information technology education, 2023(12): 80-84.
12
王英. 负责任的社会科学数据治理伦理向度[J]. 图书与情报, 2025(1): 66-73.
WANG Y. Ethical dimension of responsible social science data governance[J]. Library & information, 2025(1): 66-73.
13
王英, 卢国强. 负责任的社会科学数据治理的内涵、特征与层次[J]. 现代情报, 2025, 45(1): 124-134.
WANG Y, LU G Q. The concept, characteristics and layers of responsible social science data governance[J]. Journal of modern information, 2025, 45(1): 124-134.
14
朝乐门, 杨灿军, 王盛杰, 等. 全球数据科学课程建设现状的实证分析[J]. 数据分析与知识发现, 2017, 1(6): 12-21.
CHAO L M, YANG C J, WANG S J, et al. Data science curriculums around the world: An empirical study[J]. Data analysis and knowledge discovery, 2017, 1(6): 12-21.
15
邹纯龙, 马海群, 王今. 信息资源管理学科视域下数据科学“动态立方体”课程群建设[J]. 图书馆论坛, 2024, 44(10): 10-18.
ZOU C L, MA H Q, WANG J. "Dynamic cube" course group of data science from the perspective of information resource management science[J]. Library tribune, 2024, 44(10): 10-18.
16
吴钢, 邵宇. 德雷塞尔大学计算机与信息学院数据科学专业教育研究[J]. 图书馆学研究, 2024(4): 24-34.
WU G, SHAO Y. Research on data science education in the college of computing & informatics at drexel university[J]. Research on library science, 2024(4): 24-34.
17
赵蕊菡, 王敏桦. 对国外iSchools核心院校研究生项目数据科学类课程的调查与思考[J]. 大学图书馆学报, 2023, 41(2): 65-77.
ZHAO R H, WANG M H. Investigation and inflection on data science curriculum of graduate degree programs in iSchools at abroad[J]. Journal of academic libraries, 2023, 41(2): 65-77.
18
American Library Association. ALA-accredited programs[EB/OL]. [2025-01-07].
19
University of Michigan School of Information. Career and salary information[EB/OL]. [2025-02-25]. satisfaction%20(95%25 %20overall).
20
Syracuse University. Career outlook[EB/OL]. [2025-02-25].
21
Indiana University Purdue University – Indiannapolis. Data science B.S. (online) + applied data science M.S[EB/OL]. [2025-02-25].
22
张宁, 袁勤俭. 面向数据科学的信息管理和信息系统专业课程建设与改革[J]. 现代情报, 2017, 37(8): 106-110, 160.
ZHANG N, YUAN Q J. Course construction and reform of information management and information system for data science[J]. Journal of modern information, 2017, 37(8): 106-110, 160.
23
SHAH C. The past, the present, and the future of information and data sciences: A pragmatic view[J]. Data and information management, 2023, 7(1): 100028.
24
杨瑞仙, 吴东昌. 日本数据科学专业建设情况调查研究[J]. 情报理论与实践, 2020, 43(8): 195-201, 166.
YANG R X, WU D C. A survey on the specialty construction of data science in Japan[J]. Information studies: Theory & application, 2020, 43(8): 195-201, 166.
25
University of Illinois - Urbana Champaign. BS in information science + data science[EB/OL]. [2025-03-04].
26
中国发展改革报社. 国家数据局成立恰逢其时意义深远[EB/OL]. [2023-11-07].
27
孙迟瑶, 刘继安, 徐艳茹. 美国一流大学本科数据科学教育体系: 建设路径、体系特征与发展趋势[J]. 图书情报工作, 2022, 66(8): 134-143.
SUN C Y, LIU J A, XU Y R. Undergraduate data science education system of American world-class universities: The construction path, system characteristics and development trend[J]. Library and information service, 2022, 66(8): 134-143.
[1] KONG Xianghui, SUN Pu. Medical Data Literacy Education System in Reproducibility Crisis [J]. Journal of library and information science in agriculture, 2023, 35(4): 70-78.
[2] CHEN Shuxian, LIU Guifeng, LIU Qiong. Research Progress and Implementation of FAIR Principles for Scientific Data Management [J]. Journal of library and information science in agriculture, 2022, 34(8): 30-41.
[3] LIU Guifeng, RUAN Bingying, LIU Qiong. Enhance Data Security Governance Capability: Interpretation of Data Security Law of the People's Republic of China (Draft) [J]. Journal of library and information science in agriculture, 2021, 33(4): 4-13.
[4] YE Xinyou, ZHANG Lulu, KONG Chengguo, ZHANG Qun. Evaluation of Scientific Data Literacy Competency for Postgraduates in China and Construction of Data Literacy Education System [J]. Journal of library and information science in agriculture, 2021, 33(11): 63-73.
[5] GU Tinghua, WANG Tengli, FANG Zhou. Research on Data Literacy Education in Vocational Colleges and Universities:A Survey on Students Majoring in Business in Guangdong Polytechnic of Science and Technology [J]. Journal of library and information science in agriculture, 2021, 33(1): 80-91.
[6] WANG Yang, LIU Jiandong, YAN Hongzhong, XIA Qing. Analysis on the Development of Professional Literacy of University Libraries in the Ubiquitous Knowledge Environment [J]. Journal of library and information science in agriculture, 2020, 32(3): 62-68.
[7] CHI Yuzhuo. Literature Review of Scientific Data Competence: the Connotation, Framework and Influencing Factors [J]. Journal of library and information science in agriculture, 2020, 32(1): 23-29.
[8] LI Qian-wei. Inspiration of Ischool on the Discipline of Information Science in China [J]. Journal of library and information science in agriculture, 2016, 28(2): 133-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!