中文    English

Journal of Library and Information Science in Agriculture ›› 2024, Vol. 36 ›› Issue (11): 47-63.doi: 10.13998/j.cnki.issn1002-1248.24-0768

Previous Articles     Next Articles

Data Service Providers' Participation in Data Black Market Governance Based on Evolutionary Games

Fengling ZHANG, Xiaoqi MA   

  1. Heilongjiang University, Harbin 150080
  • Received:2024-09-30 Online:2024-11-05 Published:2025-04-09

Abstract:

[Purpose/Significance] In the context of China's commitment to the development of the data element circulation market, the governance of the data black market has emerged as a pressing issue that demands urgent attention. The purpose of this paper is to discuss the implementation of the operating law of the market economy, the utilization of the interaction of multiple parties with interests in the data circulation market to achieve meaningful participation in the governance of data service providers, the curbing of the black market trading of data elements, and the achievement of the goal of reducing the government's management costs and helping the data trading market to break through the black market shroud. [Methods/Processes] A four-party evolutionary game model is used to simulate the dynamic interaction strategy choices and the results of evolutionary stabilization strategies of data service providers, data enterprises, data black market participants and regulators in data factor circulation configuration. The study explores the conditions necessary for transforming data service providers into active participants to validate the effectiveness of the data service providers' participation in the governance mechanism. The study also discusses the methods by which the goal of enhancing the effectiveness of the data service providers' participation in the governance mechanism may be achieved. This is accomplished through the design of multi-party interaction mechanisms, and the input-output ratio of the participation governance mechanism in curbing black market trading. [Results/Conclusions] The simulation results demonstrate that by designing mechanisms in four aspects: policy, reputation, cooperation, and punishment, the participation governance mechanism of data service providers can reduce the regulatory pressure on data black markets, enhance policy flexibility, and minimize governance costs. In particular, the effect is most significant when both data service providers and data enterprises pursue long-term cooperation and reputational benefits. Specifically, 1) policy support can stimulate the potential and motivation of data service providers in governing black markets. 2) Under the reputation and cooperation mechanism, the participation of data service providers in the governance mechanism can not only help the regulator and enterprises to reduce the regulatory pressure, but also enhance the willingness of data enterprises to take the initiative in combating black market transactions and form the synergy of multi-party collaborative governance. 3) Adequate government regulation and a suitable system of sanctions can ensure the effective participation of data service providers in the governance of the black market, and ensure that the participation of data service providers in the governance and government regulation forms a synergy. Accordingly, the design and maintenance of the mechanism for data service providers' participation in governance is proposed, covering four aspects: an incentive mechanism, multiple forms of cooperation, a penalty mechanism, and technical guarantee.

Key words: data service providers, data black markets, evolutionary gaming, participation in governance, data governance

CLC Number: 

  • G256.5

Fig.1

Interaction of multiple stakeholders in the participation of data service providers in governance mechanisms"

Table 1

Description of parameters"

参数 说明 数值范围
C f 数据企业独立管理的成本 C f > 0
C s 数据服务商参与管理准备成本 C s > 0
C g 监管方全面监管的成本 C g > 0
C r 监管方当前监管成本 C r > 0
E i 数据黑市人员交易净收益 E i > 0
E s 数据企业与数据服务商合作管理的费用 E s > 0
P f 监管方对一般泄露事件的数据企业的惩罚 P f > 0
P d 监管方对重大事件与失职的数据企业的惩罚 P d > 0
P i 数据黑市人员受到的惩罚 P i > 0
G 监管方全方位监管的综合收益 G > 0
R f 数据企业严格管理获市场声誉收益 R f > 0
R s 数据服务商成功监管的市场声誉收益 R s > 0
Q 政府对参与治理数据服务商的政策激励 Q 0
D f 数据泄露带给数据企业的损失 D f > 0
D g 数据泄露带给信息安全损失 D g > 0
b 数据服务商的法律援助能力 0 < b 1
h 当前监管能力,全方位监管时h=1 0 < h 1
r 数据企业严格管理的治理水平 0 < r 1
u 数据服务商的数据黑市监管技术水平 0 < u 1

Table 2

Payment matrix for data service providers participating in black market governance mechanisms"

项目 数据服务商
参与 参与 不参与 不参与
数据企业 严格管理 E s - C s + R s u + Q , E s - C s + Q , 0 , 0 , 选择性监管 监管方
R f + E i b - E s - D f ( 1 - u ) - P f , R f - E s , R f - P f - D f ( 1 - r ) , R f - C f ,
- D g ( 1 - u ) - C r , 0 , - D g ( 1 - r ) - C r , 0 ,
E i - E i b - P i u 0 E i - P i r 0
宽松管理 - C s , - C s , 0 , 0 , 选择性监管
- P d - D f , 0 , - P d - D f , 0 ,
- D g ( 1 - h ) - C r , 0 , - D g ( 1 - h ) - C r , 0 ,
E i - P i h 0 E i - P i h 0
严格管理 E s - C s + R s u + Q , E s - C s + Q , 0 , 0 , 全方位监管
R f + E i b - E s - P f , R f - E s , R f - P f , R f - C f ,
G - C g , G - C g , G - C g , G - C g ,
E i - E i b - P i 0 E i - P i 0
宽松管理 - C s , - C s , 0 , 0 , 全方位监管
- P d - D f , 0 , - P d - D f , 0 ,
G - C g , G - C g , G - C g , G - C g ,
E i - P i 0 E i - P i 0
泄露 不泄露 泄露 不泄露
黑市人员

Fig.2

Evolutionary equilibrium of the current state of data black market governance"

Fig.3

Impact of Policy Incentives ( Q) on service provider strategies"

Fig.4

Evolutionary equilibrium when service providers participate in the service"

Fig.5

Impact of market reputation ( R f ) on data business strategy"

Fig.6

Evolutionary equilibrium when " Q = 2.2 ; R f = 2""

Table 3

Optimal ESS equilibrium combinations of R f ,   Q and R s"

Q R s = 0.5 R s = 1 R s = 1.5 R s = 2
R f = 0.5 1.1(80) 1.1(40) 1(35) 1(30)
R f = 1 1.1(89) 1 1 1
R f = 1.5 1(110) 1 1 1.9
R f = 2 1.1(140) 1.1 1.1 1.1

Table 4

Optimal ESS equilibrium combinations for Q, R f and   E s"

Q E s = 2.2 E s = 2.4 E s = 2.6 E s = 2.8 E s = 3 E s = 3.1
R s = R f = 0 0.9(140) 0.7 0.5 0.3 0.1 0
R s = R f = 0.2 0.9(125) 0.7(99) 0.5(110) 0.3(100) 0.1(99) 0(98)
R s = R f = 0.4 0.9(95) 0.7 0.5 0.3 0.1 0
R s = R f = 0.6 0.9(80) 0.7 0.5 0.3 0.1 0
R s = R f = 0.8 0.9(75) 0.7 0.5 0.3 0.1 0
R s = R f = 1 0.9(55) 0.7 0.5 0.3 0.1 0

Fig.7

Evolutionary equilibrium at " Q = 0 ; R s = R f = 0.2 ; E s = 3.1""

Table 5

Impact of black marketers' penalty intensity ( P i ) on evolutionary equilibrium"

P i P i = 0 P i = 0.5 P i = 1 P i = 1.4 P i = 1.5 P i = 1.7 P i = 2 P i = 2.5
ESS点 [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1] E12(120) E12(104) E12(98) E12(143)

Table 6

The effect of firms' general leakage penalty ( P f ) on evolutionary equilibrium"

P f P f = 0 P f = 0.5 P f = 1 P f = 1.5 P f = 2 P f = 2.5 P f = 3
ESS点 E12 (100) E12 (100) E12 =(90) E12 (90) E12 (90) E12 (85) E12 (140)

Table 7

Impact of corporate major spill penalties ( P d ) on evolutionary equilibrium"

P d P d = 0 P d = 1 P d = 1.5 P d = 2 P d = 7 P d = 8 P d = 9
ESS点 无ESS 无ESS E12 (110) E12 (95) E12 (85) E12 (95) E12 (100)
1
刘琪,杨洁. 数据黑市交易大起底: 专家估计市场规模超1500亿元“料商”称“一切需求皆可爬”[N]. 证券日报. 2022-01-20.
2
欧科云链. 构建现代数据要素市场需要“高质量数商”[EB/OL]. [2023-04-21].
3
王娟, 王赟芝, 曹芬芳. 大数据时代政府数据开放共享的博弈分析: 基于不完全信息动态模型[J]. 情报科学, 2018, 36(11): 17-22, 87.
WANG J, WANG Y Z, CAO F F. Gaming analysis of government data opening and sharing in the big data era based on incomplete information dynamic model[J]. Information science, 2018, 36(11): 17-22, 87.
4
赵刚. 《数据要素: 全球经济社会发展的新动力》[J]. 中国信息界, 2022(2): 95.
ZHAO G. Data elements: A new driving force for global economic and social development[J]. China information world, 2022(2): 95.
5
YU H B. Legal dilemmas and regulatory design for data transactions[J]. US-China law review, 2023, 20(8): 351-359.
6
深圳市发展和改革委员会. 深圳市数据商和数据流通交易第三方服务机构管理暂行办法[EB/OL]. [2024-07-03].
7
中华人民共和国数据安全法[N]. 中华人民共和国全国人民代表大会常务委员会公报, 2021(5): 951-956.
8
杨治. 实践样态与路径选择: 网络平台用户数据合理利用法律规则的构建[J]. 数字法治, 2024(2): 45-59.
YANG Z. Practice patterns and path selection: Construction of legal rules for the reasonable utilization of user data on network platforms[J]. Digital law, 2024(2): 45-59.
9
ZHU R R, WANG M F, ZHANG X F, et al. Investigation of personal data protection mechanism based on blockchain technology[J]. Scientific reports, 2023, 13(1): 21918.
10
颜海龙, 王树兰. 基于国产密码技术的不动产登记集成办事平台设计与实现[J]. 信息网络安全, 2024, 24(2): 303-308.
YAN H L, WANG S L. Design and implementation of integrated service platform for real estate registration based on domestic cryptographic technology[J]. Netinfo security, 2024, 24(2): 303-308.
11
LI Y, LI L Y, ZHAO Y Q, et al. Toward decentralized fair data trading based on blockchain[J]. IEEE network, 2021, 35(1): 304-310.
12
刘靖宇, 曹兴旺, 颜钰莹, 等. 基于双层链的个人隐私数据保护和授权框架[J]. 郑州大学学报(理学版), 2024, 56(2): 1-8.
LIU J Y, CAO X W, YAN Y Y, et al. Personal privacy data protection and authorization framework based on double-layer chain[J]. Journal of Zhengzhou university (natural science edition), 2024, 56(2): 1-8.
13
XIONG W, XIONG L. Smart contract based data trading mode using blockchain and machine learning[J]. IEEE access, 2019, 7: 102331-102344.
14
任保平, 王思琛. 新发展格局下我国数据要素市场治理的理论逻辑和实践路径[J]. 天津社会科学, 2023(3): 81-90.
REN B P, WANG S C. The governance of China's data factor market under the background of the unified national market: Theoretical logic and practical path[J]. Tianjin social sciences, 2023(3): 81-90.
15
广东省广州市白云区人民法院. 蒋创、巫华龙侵犯公民个人信息一审刑事判决书[EB/OL]. [2024-07-02].
16
CHENG L, LIU F, YAO D D. Enterprise data breach: Causes, challenges, prevention, and future directions[J]. WIREs data mining and knowledge discovery, 2017, 7(5): e1211.
17
李想. 内鬼黑客狂卖个人信息“年产值”飙上千亿[N]. 证券时报. 2021-03-24.
18
奇安信数据安全专班. 2023中国政企机构数据安全风险研究报告[R]. 北京: 奇安信公司, 2024.
19
上海数据交易所. 数据交易服务平台-数商生态[EB/OL]. [2024-03-04].
20
中国网络安全产业联盟. 中国网络安全产业分析报告[R]. 北京: 中国信息安全年鉴, 2024: 266-313.
21
郑荣, 高志豪, 王晓宇, 等. 复杂信息环境下的产业数据安全治理: 概念界定、治理体系与场景实践[J/OL]. 情报资料工作, 2023: 1-19.
ZHENG R, GAO Z H, WANG X Y, et al. Industrial Data Security Governance in Complex Information Environments: Concept Definition, Governance System, and Scenario Practice[J/OL]. China industrial economics, 2023: 1-19.
22
李爱君. 数据要素市场数据源供给主体法律制度构建[J]. 中国社会科学院大学学报, 2022, 42(12): 66-78, 133-134.
LI A J. Legal system construction of data source supply entities in the data element market[J]. Journal of university of Chinese academy of social sciences, 2022, 42(12): 66-78, 133-134.
23
国务院. 中共中央 国务院关于构建数据基础制度更好发挥数据要素作用的意见[EB/OL]. [2024-10-24].
24
张会平, 赵溱, 马太平, 等. 我国数据要素市场化流通的两种模式与生态系统构建[J]. 信息资源管理学报, 2023, 13(6): 29-42.
ZANG H P, ZHAO Q, MA T P, et al. Two modes and ecological system construction of data element market circulation in China[J]. Journal of information resources management, 2023, 13(6): 29-42.
25
WANG B J, LI Z W, LU Y, et al. Customizing or default? Study on cross-market service providing strategy of platforms in multimarket competition[J]. Chinese journal of management science, 2024, 32(12): 194-205.
26
顾丽梅, 李欢欢. 行政动员与多元参与: 生活垃圾分类参与式治理的实现路径——基于上海的实践[J]. 公共管理学报, 2021, 18(2): 83-94, 170.
GU L M, LI H H. Administrative mobilization and multi-participation: The path to participatory governance of domestic waste classification - Based on the practice in Shanghai[J]. Journal of public administration, 2021, 18(2): 83-94, 170.
27
卓文昊, 曹现强. 社区参与式治理影响因素的模式构建[J]. 行政论坛, 2020, 27(6): 116-121.
ZHUO W H, CAO X Q. A model of factors influencing community participatory governance[J]. Administrative tribune, 2020, 27(6): 116-121.
28
沈费伟. 农村环境参与式治理的实现路径考察: 基于浙北荻港村的个案研究[J]. 农业经济问题, 2019, 40(8): 30-39.
SHEN F W. Investigation on the path of realizing participatory governance in rural environment: Case study based on digang village in north Zhejiang[J]. Issues in agricultural economy, 2019, 40(8): 30-39.
29
张忠. 以一体推进“三不腐”方针方略统领“一把手”监督[J]. 中国纪检监察, 2022(18): 44-46.
ZHANG Z. leading the supervision of "top leaders" with the integrated promotion of the "three non-corruption" policy[J]. China discipline inspection and supervision, 2022(18): 44-46.
30
重庆人民政府. 重庆市法治社会建设实施方案(2021-2025年)[EB/OL]. [2024-10-24].
31
SILTAOJA M E. Value priorities as combining core factors between CSR and reputation - A qualitative study[J]. Journal of business ethics, 2006, 68(1): 91-111.
32
黄敏镁. 基于演化博弈的供应链协同产品开发合作机制研究[J]. 中国管理科学, 2010, 18(6): 155-162.
HUANG M M. Evolutionary game analysis of cooperation mechanism for collaborative product development in supply chain[J]. Chinese journal of management science, 2010, 18(6): 155-162.
33
SMITH J M, PRICE G R. The logic of animal conflict[J]. Nature, 1973, 246(5427): 15-18.
34
NEWTON J. Evolutionary game theory: A renaissance[J]. Games, 2018, 9(2): 31.
35
International-Data-Corporation. IDC worldwide security spending guide[EB/OL]. [2024-10-24].
36
Cyberventures. Cybercrime to cost the world $10.5 trillion annually by 2025[EB/OL]. [2024-08-27].
37
北京数字世界咨询有限公司, 北京零零信安科技有限公司. 2023年数据泄露态势报告[EB/OL]. [2024-08-12].
38
Security IBM. 2023年数据泄露代价报告[EB/OL]. [2024-09-22].
39
零零信安. 2023年数据泄露态势年度报告-上篇[EB/OL]. [2024-10-16].
40
威胁猎人. 威胁猎人发布关联情报引擎, 风险识别准确率稳定在98%+[EB/OL]. [2024-08-30].
[1] Zhijun CHANG, Li QIAN, Yaoting WU, Yunpeng QU, Yue GONG, Zhixiong ZHANG. Construction of a Scientific Literature AI Data System for the Thematic Scenario: Technical Framework Research and Practice [J]. Journal of Library and Information Science in Agriculture, 2024, 36(9): 4-17.
[2] PENG Lihui, ZHANG Qiong, LI Tianyi. Risk of AI Algorithmic Discrimination Embedded in Government Data Governance and Its Prevention and Control [J]. Journal of Library and Information Science in Agriculture, 2024, 36(5): 23-31.
[3] CHANG ZhiJun, XU LiYuan, YU QianQian, ZHANG JianYong, WANG YongJi. Scientific and Technical Literature Data Management System Based on Life Cycle Model [J]. Journal of Library and Information Science in Agriculture, 2022, 34(6): 36-49.
[4] SONG Shanshan, BAI Wenlin. A Review of Big Data Governance Research in China [J]. Journal of Library and Information Science in Agriculture, 2022, 34(4): 4-17.
[5] ZHENG Jianming, PAN Ying. Public Cultural Data Governance System and Guarantee Measures [J]. Journal of Library and Information Science in Agriculture, 2022, 34(2): 4-13.
[6] LIU Guifeng, RUAN Bingying, LIU Qiong. Enhance Data Security Governance Capability: Interpretation of Data Security Law of the People's Republic of China (Draft) [J]. Journal of Library and Information Science in Agriculture, 2021, 33(4): 4-13.
[7] ZHOU Zhenguo. Data Governance Research from the Perspective of Governance Framework [J]. Journal of Library and Information Science in Agriculture, 2020, 32(7): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!