中文    English

Journal of Library and Information Science in Agriculture ›› 2024, Vol. 36 ›› Issue (3): 92-107.doi: 10.13998/j.cnki.issn1002-1248.24-0135

Previous Articles     Next Articles

Ontology Construction for Intelligent Control and Application of Crop Germplasm Resources

FAN Kexin1, XIAN Guojian1,4, ZHAO Ruixue1,3, HUANG Yongwen1,3, SUN Tan2,4,*   

  1. 1. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081;
    2. The Chinese Academy of Agricultural Sciences, Beijing 100081;
    3. Key Laboratory of Knowledge Mining and Knowledge Services in Agricultural Converging Publishing, National Press and Publication Administration, Beijing 100081;
    4. Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2024-02-01 Online:2024-03-05 Published:2024-06-24

Abstract: [Purpose/Significance] Breeding 4.0, characterized by "biotechnology + artificial intelligence + big data information technology," has brought new requirements for the digital management and intelligent utilization of germplasm resources. In order to meet the diverse support needs for knowledge service forms under an intelligent background, this article aims to propose an effective method for knowledge organization and deep semantic association. This is essential to address the inconveniences that discrete germplasm resource data bring to researchers when collaborating across regions and institutions. Therefore, the article presents a method that integrates fragmented domain data into a systematic knowledge system, which is particularly important. [Method/Process] By analyzing the domain data descriptions and the current organizational status, the ontology construction was performed using the seven-step method developed by Stanford University Hospital. First, existing ontologies such as the Crop Ontology, Gene Ontology, and Darwin Core were referenced and reused, and then integrated with the knowledge framework from the "Technical Specifications for Crop Germplasm Resources" series and example datasets. Consequently, an ontology model was successfully constructed, which covers five major categories of crops: cereals, cash crops, vegetables, fruit trees, and forage and green manure crops. This model defines 11 core classes including phenotypes and genotypes, as well as identification methods and evaluation standards, along with 10 object properties and 56 data properties. [Results/Conclusions] Based on the ontology model, the article proposes a methodology for constructing a knowledge graph of crop germplasm resources. Using rice as an example, a domain-specific fine-grained knowledge graph is developed to facilitate semantic association and querying across multiple knowledge dimensions. The article also outlines prospective designs for new intelligent knowledge service scenarios driven by the knowledge graph, such as intelligent question and answer and knowledge computation, aiming to meet the knowledge service needs of researchers, breeding companies, and the general public. This is intended to provide more accurate and efficient support for computational breeding efforts. Currently, the research focuses only on rice as an example of a cereal crop, with economic crops, vegetables, and other types of crop germplasm resources not yet included in the study. Future work will expand the scope of the study and add new classes and properties specific to different germplasm resources to better address the diverse and personalized knowledge needs of users in the eraa of big data. This approach aims to promote the contextualization, ubiquity, and intelligence of knowledge services, and to further integrate them into different academic disciplines related to the development of new quality digital productivity.

Key words: germplasm resources, ontology model, knowledge graph, new quality digital productivity, computational breeding

CLC Number: 

  • G252
[1] 余建斌, 赵鹏, 朱隽. 攥紧中国种子端稳中国饭碗——开局之年看南繁[N]. 人民日报, 2023-06-26(1).
[2] 中共中央国务院关于做好二○二三年全面推进乡村振兴重点工作的意见[N]. 人民日报, 2023-02-14.
[3] 中共中央国务院印发《扩大内需战略规划纲要(2022-2035年)》[N]. 人民日报, 2022-12-15.
[4] 陈学森, 王楠, 张宗营, 等. 果树科技面向国家重大需求Ⅰ:果树种质资源与遗传育种研究的四个坚持和四个面向[J]. 中国果树, 2023(1): 1-4.
CHEN X S, WANG N, ZHANG Z Y, et al.Fruit tree technology faces major national needs Ⅰ: Four persistence and four faces in the research of fruit germplasm resources and genetic breeding[J]. China fruits, 2023(1): 1-4.
[5] 新华社. 习近平在中共中央政治局第十一次集体学习时强调:加快发展新质生产力扎实推进高质量发展[EB/OL].[2024-02-01].https://baijiahao.baidu.com/s?id=1789665198906980661&wfr=spider&for=pc.
[6] Seed-statistics[EB/OL].[2022-05-22].https://worldseed.org/resources/seed-statistics/.
[7] 王澎. 4.0智能育种时代迎来数字化变革——数字经济赋能种业振兴, 加速成果转化落地[EB/OL].[2023-10-21]. https://www.farmer.com.cn/2023/07/09/wap_99932220.html.
[8] 李国杰. 智能化科研(AI4R):第五科研范式[J]. 中国科学院院刊, 2024, 39(1): 1-9.
LI G J.AI4R: The fifth scientific research paradigm[J]. Bulletin of Chinese academy of sciences, 2024, 39(1): 1-9.
[9] 李林华. 都柏林核心与网络信息资源编目[J]. 图书馆杂志, 2001, 20(3): 17-19.
LI L H.Dublin core and the Internet information source description[J]. Library journal, 2001, 20(3): 17-19.
[10] WIECZOREK J, BLOOM D, GURALNICK R, et al.Darwin core: An evolving community-developed biodiversity data standard[J]. PLoS One, 2012, 7(1): e29715.
[11] 韩龙植, 魏兴华. 水稻种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006.
HAN L Z, WEI X H.Descriptors and data standard for rice (oryza sativa L.)[M]. Beijing: China Agriculture Press, 2006.
[12] 唐清杰, 王效宁, 熊怀阳, 等. 海南普通野生稻稻瘟病抗性资源调查和鉴定[J]. 植物遗传资源学报, 2013, 14(5): 821-825.
TANG Q J, WANG X N, XIONG H Y, et al.Investigation and identification of resistance to rice blast in oryza rufipogon griff indigenous to Hainan Province[J]. Journal of plant genetic resources, 2013, 14(5): 821-825.
[13] 赵小强, 方鹏, 彭云玲, 等. 基于两个相关群体的玉米6个穗部性状QTL定位[J]. 农业生物技术学报, 2018, 26(5): 729-742.
ZHAO X Q, FANG P, PENG Y L, et al.QTL mapping for six ear-related traits based on two maize(zea mays) related populations[J]. Journal of agricultural biotechnology, 2018, 26(5): 729-742.
[14] GRUBER T R.A translation approach to portable ontology specifications[J]. Knowledge acquisition, 1993, 5(2): 199-220.
[15] GANGEMI A, PRESUTTI V.Ontology design patterns[M]//Handbook on Ontologies. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 221-243.
[16] MATTEIS L, CHIBON P Y, ESPINOSA H, et al.Crop ontology: Vocabulary for crop-related concepts[J]. CEUR workshop proceedings, 2013, 979: 121-133.
[17] COOPER L, JAISWAL P.The plant ontology: A tool for plant genomics[J]. Methods in molecular biology (Clifton, N J), 2016, 1374: 89-114.
[18] ASHBURNER M, BALL C A, BLAKE J A, et al.Gene Ontology: Tool for the unification of biology[J]. Nature genetics, 2000, 25(1): 25-29.
[19] 何琳, 常颖聪. 科研人员数据共享意愿研究[J]. 图书与情报, 2014(5): 125-131.
HE L, CHANG Y C.Research on the willingness of researchers to share scientific data[J]. Library & information, 2014(5): 125-131.
[20] GRIN[EB/OL].[2024-03-25].https://www.ars-grin.gov/.
[21] Genesys[EB/OL].[2024-03-25].https://www.genesys-pgr.org/.
[22] VENKATESAN A, TAGNY NGOMPE G, EL HASSOUNI N, et al.Agronomic Linked Data(AgroLD): A knowledge-based system to enable integrative biology in agronomy[J]. PLoS One, 2018, 13(11): e0198270.
[23] 范可昕, 孙坦, 赵瑞雪, 等. 农作物种质资源知识服务平台比较研究与启示[J]. 农业图书情报学报, 2023, 35(5): 64-73.
FAN K X, SUN T, ZHAO R X, et al.Comparison and enlightenment of crop germplasm resource knowledge service platforms[J]. Journal of library and information science in agriculture, 2023, 35(5): 64-73.
[24] 胡兆芹. 本体与知识组织[M]. 北京: 中国文史出版社, 2014.
HU Z Q.Ontology and knowledge organization[M]. Beijing: China Literature and History Publishing House, 2014.
[25] 李恒杰, 李军权, 李明. 领域本体建模方法研究[J]. 计算机工程与设计, 2008(2): 381-384.
LI H J, LI J Q,LI M, et al.Research on modeling method of domain ontology[J]. Computer engineering and design, 2008(2): 381-384.
[26] 余凡. 领域本体构建方法及实证研究——以测绘学领域为例[D]. 武汉: 武汉大学, 2013.
YU F.Methodothology and empirical research on domain ontology[D].Wuhan: Wuhan University, 2013.
[27] NOY N F, MCGUINNESS D L.Ontology development 101: A guide to creating your first ontology[J]. Stanford knowledge systems labo-ratory, 2001: 144-162.
[28] YE Y, YANG D, JIANG Z B, et al.Ontology-based semantic models for supply chain management[J]. The international journal of advanced manufacturing technology, 2008, 37(11): 1250-1260.
[29] 鲜国建, 赵瑞雪, 寇远涛, 等. 农业科学叙词表关联数据构建研究与实践[J]. 现代图书情报技术, 2013(11): 8-14.
XIAN G J, ZHAO R X, KOU Y T, et al.Study and practice on con-verting and publishing Chinese agricultural thesaurus as linked open data[J]. New technology of library and information service, 2013(11): 8-14.
[30] 杨荣武. 分子生物学[M]. 2版. 南京: 南京大学出版社, 2017.
YANG R W.Molecular biology[M]. 2nd ed. Nanjing: Nanjing Uni-versity Press, 2017.
[31] 杨秀璋. 实体和属性对齐方法的研究与实现[D]. 北京: 北京理工大学, 2016.
YANG X Z.Research and implementation on entity alignment and attribute alignment[D]. Beijing: Beijing Institute of Technology, 2016.
[32] 王琴梅, 杨军鸽. 数字新质生产力与我国农业的高质量发展研究[J]. 陕西师范大学学报(哲学社会科学版), 2023, 52(6): 61-72.
WANG Q M, YANG J G.Research on digital new quality productivity and high-quality development of Chinese agriculture[J]. Journal of Shaanxi normal university(philosophy and social sciences edition), 2023, 52(6): 61-72.
[33] 王飞跃, 缪青海. 人工智能驱动的科学研究新范式: 从AI4S到智能科学[J]. 中国科学院院刊, 2023, 38(4): 536-540.
WANG F Y, MIAO Q H.Novel paradigm for AI-driven scientific research: From AI4S to intelligent science[J]. Bulletin of Chinese academy of sciences, 2023, 38(4): 536-540.
[1] CHEN Caiming, FENG Jianzhong, BAI Linyan, WANG Jian, XIE Nengfu, ZOU Jun. Representation Model of Agricultural Knowledge Graph Based on the HARP Framework [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 66-77.
[2] FAN KeXin, SUN Tan, ZHAO RuiXue, KOU YuanTao, XIAN GuoJian. Comparison and Enlightenment of Crop Germplasm Resource Knowledge Service Platforms [J]. Journal of Library and Information Science in Agriculture, 2023, 35(5): 64-73.
[3] MA Weilu, XIAN Guojian, ZHAO Ruixue, LI Jiao, HUANG Yongwen, SUN Tan. Comparative Study and Optimization Strategies of Knowledge Graph Construction Management Systems [J]. Journal of Library and Information Science in Agriculture, 2023, 35(4): 19-31.
[4] CHANG ZhiJun, XU LiYuan, YU QianQian, ZHANG JianYong, WANG YongJi. Scientific and Technical Literature Data Management System Based on Life Cycle Model [J]. Journal of Library and Information Science in Agriculture, 2022, 34(6): 36-49.
[5] YANG Siluo, TIAN Peilin, ZHU Chuanyu, QIU Junping. Characteristics of UNESCO's Humanities and Social Sciences Research: Topic, Evolution and Cooperation [J]. Journal of Library and Information Science in Agriculture, 2021, 33(6): 6-17.
[6] XU Yongle, CHEN Yuanyuan, YANG Tingting, WAN Xiangli. Comparative Analysis of the Research on the Influence of Chinese and International Think Tanks [J]. Journal of Library and Information Science in Agriculture, 2021, 33(11): 50-62.
[7] LYU Lucheng, HAN Tao. Artificial Intelligence Empowers Library and Information Service ——Review of Forums about Information Technology for Library 2019 [J]. Journal of Library and Information Science in Agriculture, 2020, 32(5): 13-18.
[8] ZHANG Tao, SUN Ruiying, LI Zhongjun. Subject Clustering and Evolutionary Trend of Public Opinion Documents in China [J]. Journal of Library and Information Science in Agriculture, 2020, 32(2): 14-21.
[9] LI Zhongjun, SUN Ruiying, ZHANG Tao. Analysis of the Research Status of Public Opinion Ecology in China Based on Bibliometrics (2004-2019) [J]. Journal of Library and Information Science in Agriculture, 2020, 32(2): 5-13.
[10] CHEN Qingyun, CAO Jianfei, CHEN Rongzhen. Research and Practices From the Thesaurus to Knowledge Graph [J]. Agricultural Library and Information, 2019, 31(1): 44-53.
[11] ZHI Yingying. Exploration on the Application of Machine Learning in Library Discover System —Taking the Discover Tool Yewno Based on Knowledge Graph as Example [J]. , 2018, 30(7): 47-50.
[12] CHEN Fen, ZHU Tianxiu. Research on University Library's Subject Service Based on Bibliometrics and Knowledge Graph Analysis [J]. , 2018, 30(1): 99-103.
[13] ZHAO Lai-juan. Visualized Analysis on the Research Hotspots of Mobile Library in China [J]. , 2015, 27(8): 46-51.
[14] TIAN Tian. Analysis of Information Service Visualization Graph Based on CiteSpace Ⅲ [J]. , 2015, 27(8): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!