农业图书情报学报 ›› 2025, Vol. 37 ›› Issue (6): 55-69.doi: 10.13998/j.cnki.issn1002-1248.25-0275

• 研究论文 • 上一篇    

融合BERTopic与IWOA-BiLSTM模型的新兴技术主题识别与趋势预测方法研究

陈媛媛1,2, 符彬3, 高源3, 乔俊伟1,2   

  1. 1.上海出版印刷高等专科学校,上海 200093
    2.国家新闻出版署 智能与绿色柔版印刷重点实验室,上海 200093
    3.新疆师范大学 计算机科学技术学院,乌鲁木齐 830054
  • 收稿日期:2025-03-27 出版日期:2025-06-05 发布日期:2025-09-16
  • 作者简介:陈媛媛(1977- ),女,博士,研究方向为智库评价与管理、技术识别与转化研究
    符彬(2000- ),男,硕士研究生,研究方向为新兴技术主题识别与预测
    高源(1998- ),男,硕士研究生,研究方向为舆情预测
    乔俊伟(1973- ),男,博士,教授,研究方向为智能制造、智能印刷等
  • 基金资助:
    上海高校特聘教授(东方学者)岗位计划项目(TP2022126);上海出版印刷高等专科学校高层次人才项目“基于产业的科技前沿技术识别研究”(2021RCKY);国家新闻出版署“智能与绿色柔版印刷”重点实验室项目(KLIGFP-01)

Identification of Emerging Technology Topics and Prediction of Trends Using a Method Integrating BERTopic and IWOA-BiLSTM Models

CHEN Yuanyuan1,2, FU Bin3, GAO Yuan3, QIAO Junwei1,2   

  1. 1.Shanghai Publishing and Printing College, Shanghai 200093
    2.Key Laboratory of Intelligent and Green Flexographic Printing, National Press and Publication Administration, Shanghai 200093
    3.College of Computer Science and Technology, Xinjiang Normal University, Urumqi 830054
  • Received:2025-03-27 Online:2025-06-05 Published:2025-09-16

摘要:

【目的/意义】 为有效识别并预测人工智能领域的新兴技术主题,本文构建一套面向未来的分析方法体系,旨在为科技政策制定、企业研发布局及资源配置提供数据驱动的支撑,提升前瞻性科技管理能力。 【方法/过程】 以人工智能相关专利数据为基础,运用BERTopic模型进行语义主题建模,构建涵盖新颖性、影响力与增长率的三维指标体系,从中识别具有发展潜力的技术主题。同时,引入改进型鲸鱼优化算法(IWOA)优化BiLSTM神经网络参数,实现对技术主题演化趋势的精确预测。 【结果/结论】 实证结果显示,BERTopic模型在主题一致性方面显著优于传统方法,所提取主题更具聚类精度与语义表达力;IWOA-BiLSTM在RMSE、MAPE、MAE等多项指标上均取得最佳预测性能,验证了该融合方法在新兴技术主题识别与趋势建模方面的有效性。研究成果可为科技战略制定提供可靠的定量依据。

关键词: 新兴技术, 主题识别, 趋势预测, BERTopic, IWOA-BiLSTM

Abstract:

[Purpose/Significance] With the rapid advancement of global science and technology, emerging technologies are constantly evolving, placing higher demands on national strategic planning and resource allocation. Artificial intelligence (AI), as a core driver of the current technological revolution, requires close attention to its internal technical topic evolution to anticipate disruptive changes and guide the direction innovation. Although existing research primarily focuses on identifying technical topics through bibliometric or patent analysis, there is still insufficient quantitative forecasting of their future development. To address this gap, this study proposes an integrated analytical framework that combines BERTopic-based topic modeling with an IWOA-optimized BiLSTM neural network, achieving a unified approach to both topic identification and trend forecasting. Unlike traditional LDA models or expert-based subjective judgment, this method demonstrates significant advancements in semantic representation, model optimization, and prediction accuracy. It expands the theoretical boundaries of emerging technology forecasting and offers valuable quantitative support for science and technology policy-making. [Method/Process] This study utilized 22,243 AI-related patent records collected from 2015 to 2024. BERTopic was applied to extract representative technology topics from patent abstracts. A multi-dimensional evaluation system was constructed using three indicators: novelty, impact, and growth rate, capturing different aspects of emerging technologies. The CRITIC method was employed to objectively assign weights to each dimension, enhancing the robustness and balance of the composite index. BERTopic, which integrates BERT-based semantic embeddings with HDBSCAN density-based clustering, improves both the coherence and granularity of topic extraction. For trend prediction, an Improved Whale Optimization Algorithm (IWOA) was introduced to fine-tune BiLSTM's learning rate, epoch count, and hidden layer size. IWOA enhances global optimization through Gaussian chaos initialization, Levy flight strategy, nonlinear control factors, and elite reverse learning. [Results/Conclusions] Experimental results show that BERTopic achieves superior topic coherence compared to baseline models and successfully identifies five emerging technical areas, including Intelligent Models and Algorithms, Information Processing, Deep Neural Networks, Smart Robotics, and Numerical Control Systems. The IWOA-BiLSTM model outperforms conventional LSTM and BiLSTM models in error metrics (MAPE, RMSE, and MAE), confirming its predictive advantage. Forecast results indicate that these emerging topics will experience sustained growth over the next five years, reflecting strong application potential and industrial value. This study confirms the feasibility and effectiveness of the integrated "identification–prediction" framework, providing a data-driven tool for strategic decision-making in science and technology development. Limitations include dependence on data quality and a current focus on the field of AI. Future research should expand the framework to other strategic areas, such as renewable energy, biomedicine, and intelligent manufacturing, to further validate its generalizability.

Key words: emerging technologies, topic identification trend prediction, BERTopic, IWOA-BiLSTM

中图分类号:  G353

引用本文

陈媛媛, 符彬, 高源, 乔俊伟. 融合BERTopic与IWOA-BiLSTM模型的新兴技术主题识别与趋势预测方法研究[J]. 农业图书情报学报, 2025, 37(6): 55-69.

CHEN Yuanyuan, FU Bin, GAO Yuan, QIAO Junwei. Identification of Emerging Technology Topics and Prediction of Trends Using a Method Integrating BERTopic and IWOA-BiLSTM Models[J]. Journal of library and information science in agriculture, 2025, 37(6): 55-69.