[1] |
唐恒, 邱悦文. 多源信息视角下的多指标新兴技术主题识别研究: 以智能网联汽车领域为例[J]. 情报杂志, 2021, 40(3): 81-88.
|
|
TANG H, QIU Y W. Emerging technology topic identification based on multi-source information: Intelligent connected vehicle as an example[J]. Journal of intelligence, 2021, 40(3): 81-88.
|
[2] |
周萌, 朱相丽. 新兴技术概念辨析及其识别方法研究进展[J]. 情报理论与实践, 2019, 42(10): 162-169.
|
|
ZHOU M, ZHU X L. Discrimination of the concept of emerging technologies and research progress on its identification methods[J]. Information studies: Theory & application, 2019, 42(10): 162-169.
|
[3] |
YANG S, JIANG M. Research progress on the connotation, characteristics, and identification methods of emerging technologies[J]. Information science, 2023, 41(5): 181-190.
|
[4] |
GAO N, GAO J, CHEN H. Research on identification and evolutionary path analysis methods of emerging technologies: A case study of the integrated circuit field[J]. Information science, 2023, 41(3): 127-135, 172.
|
[5] |
李欣, 王静静, 杨梓, 等. 基于SAO结构语义分析的新兴技术识别研究[J]. 情报杂志, 2016, 35(3): 80-84.
|
|
LI X, WANG J J, YANG Z, et al. Identifying emerging technologies based on subject–action-object[J]. Journal of intelligence, 2016, 35(3): 80-84.
|
[6] |
项芮, 孙巍. 基于PhraseLDA-SNA和机器学习的技术主题影响力测度方法研究[J]. 农业图书情报学报, 2024, 36(4): 45-62.
|
|
XIANG R, SUN W. Methodology for assessing the influence of technical topics based on PhraseLDA-SNA and machine learning[J]. Journal of library and information science in agriculture, 2024, 36(4): 45-62.
|
[7] |
赵磊,章成志.基于不同内容层面的特定领域研究主题差异分析研究[J].农业图书情报学报, 2021, 33(5): 14-27.
|
|
ZHAO L, ZHANG C Z. Difference analysis of research topics in a specific domain based on different content levels[J]. Journal of library and information science in agriculture, 2021, 33(5): 14-27.
|
[8] |
张新猛, 刘江鹏, 范亚茹, 等. 产业链视角下专利新兴技术主题识别[J]. 情报杂志, 2023, 42(8): 96-101, 55.
|
|
ZHANG X M, LIU J P, FAN Y R, et al. Identification emerging technology topics of patent from the perspective of industry chain[J]. Journal of intelligence, 2023, 42(8): 96-101, 55.
|
[9] |
汪大锟, 化柏林. 基于BERTopic的新兴技术主题识别研究[J]. 科技情报研究, 2025, 7(1): 131-140.
|
|
WANG D K, HUA B L. Research on emerging technology topic identification based on BERTopic[J]. Scientific information research, 2025, 7(1): 131-140.
|
[10] |
SONG B, LUAN C, LIANG D. Emerging technology topic recognition from the perspective of technical feature similarity[J]. Soft science, 2023, 37(12): 80-85, 108.
|
[11] |
宋博文, 栾春娟, 梁丹妮. 机器学习视域下新兴技术主题识别研究: 基于技术特征相似性[J]. 现代情报, 2022, 42(9): 49-57.
|
|
SONG B W, LUAN C J, LIANG D N. Recognition model of emerging technology topic from machine learning perspective: Based on similarity of technical characteristics[J]. Journal of modern information, 2022, 42(9): 49-57.
|
[12] |
任惠超, 黄庆龙, 张祖国, 等. 船舶领域新兴技术主题识别技术研究[J]. 情报理论与实践, 2022, 45(11): 103-106.
|
|
REN H C, HUANG Q L, ZHANG Z G, et al. Research on topic identification technology of emerging technology in the ship field[J]. Information studies: Theory & application, 2022, 45(11): 103-106.
|
[13] |
王山, 谭宗颖. 关键核心技术识别赋能新质生产力发展:内在逻辑、现实挑战与实践路径[J]. 农业图书情报学报, 2024, 36(2): 26-35.
|
|
WANG S, TAN Z Y. Identification of key core technologies enables the development of new quality productive forces[J]. Journal of library and information science in agriculture, 2024, 36(2): 26-35.
|
[14] |
ZHANG K, LÜ L C, HAN T, et al. Research on emerging technology identification from the perspective of “paper-patent” correlation[J]. Information studies: Theory and application, 2024, 47(9).
|
[15] |
冉从敬, 田文芳. 融合SVM-LDA与加权相似度的潜在新兴技术识别研究: 以人工智能领域为例[J]. 情报学报, 2024, 43(5): 563-574.
|
|
RAN C J, TIAN W F. Identification of potential emerging technologies by fusing SVM-LDA and weighted similarity: Taking the field of artificial intelligence as an example[J]. Journal of the China society for scientific and technical information, 2024, 43(5): 563-574.
|
[16] |
董放, 刘宇飞, 周源. 基于LDA-SVM论文摘要多分类新兴技术预测[J]. 情报杂志, 2017, 36(7): 40-45, 133.
|
|
DONG F, LIU Y F, ZHOU Y. Prediction of emerging technologies based on LDA-SVM multi-class abstract of paper classification[J]. Journal of intelligence, 2017, 36(7): 40-45, 133.
|
[17] |
吴东雪, 沈桂兰. 一种基于LDA模型的新兴主题识别与探测方法[J]. 河南师范大学学报(自然科学版), 2024, 52(2): 72-80.
|
|
WU D X, SHEN G L. An emerging topic identification and detection method based on LDA model[J]. Journal of Henan normal university (natural science edition), 2024, 52(2): 72-80.
|
[18] |
LIU Y, XUE Y. Research on blockchain industry public opinion monitoring combining sentiment analysis and multivariate time series[J]. Information engineering, 2023, 9(1): 3-14.
|
[19] |
刘婷, 赵亚娟. 技术机会识别研究综述与展望[J]. 农业图书情报学报, 2023, 35(7): 4-17.
|
|
LIU T, ZHAO Y J. Review and prospect of research on technology opportunity identification[J]. Journal of library and information science in agriculture, 2023, 35(7): 4-17.
|
[20] |
张雪, 张志强, 朱冬亮. 基于时间序列分析的潜在学科交叉前沿主题识别研究[J]. 情报理论与实践, 2024, 47(4): 152-162.
|
|
ZHANG X, ZHANG Z Q, ZHU D L. Identifying potential interdisciplinary front topics based on time series analysis[J]. Information studies: Theory & application, 2024, 47(4): 152-162.
|
[21] |
崔海燕, 李雅文, 徐欣. 基于时间卷积网络的科技需求主题热度预测算法[J]. 广西科学, 2022, 29(4): 627-633.
|
|
CUI H Y, LI Y W, XU X. Algorithm of subject heat of science and technology demand prediction based on time convolution network[J]. Guangxi sciences, 2022, 29(4): 627-633.
|
[22] |
CHEN W, CHEN W. Research on popularity prediction of emerging topics based on multivariable lstm model with bibliometric indicators[J]. Data analysis and knowledge discovery, 2022, 6(10): 35-45.
|
[23] |
霍朝光, 霍帆帆, 董克. 基于LSTM神经网络的学科主题热度预测模型[J]. 图书情报知识, 2021, 38(2): 25-34.
|
|
HUO C G, HUO F F, DONG K. The popularity prediction of scientific topics based on LSTM[J]. Documentation, information & knowledge, 2021, 38(2): 25-34.
|
[24] |
冯增喜, 李嘉乐, 葛珣, 等. 融合多策略改进鲸鱼优化算法及其应用[J]. 计算机集成制造系统, 2025, 31(2): 590-603.
|
|
FENG Z X, LI J L, GE X, et al. Integrating multi-strategy improved whale optimization algorithm and its application[J]. Computer integrated manufacturing systems, 2025, 31(2): 590-603.
|
[25] |
许学国, 桂美增. 基于深度学习的技术预测方法: 以机器人技术为例[J]. 情报杂志, 2020, 39(8): 53-62.
|
|
XU X G, GUI M Z. Technology forecast based on deep learning: Using robot technology as an example[J]. Journal of intelligence, 2020, 39(8): 53-62.
|
[26] |
龚扣林, 周宇, 丁笠, 等. 基于BiLSTM模型的漏洞检测[J]. 计算机科学, 2020, 47(5): 295-300.
|
|
GONG K L, ZHOU Y, DING L, et al. Vulnerability detection using bidirectional long short-term memory networks[J]. Computer science, 2020, 47(5): 295-300.
|
[27] |
吴红, 伊惠芳, 马永新, 等. 面向专利技术主题分析的WI-LDA模型研究[J]. 图书情报工作, 2018, 62(17): 68-74.
|
|
WU H, YI H F, MA Y X, et al. WI-LDA: Technical topic analysis in patents[J]. Library and information service, 2018, 62(17): 68-74.
|