[1] 杨敏, 夏翠娟, 颜佳. 数字人文视域下图像库建设的现状分析与趋势前瞻[J]. 图书馆杂志, 2021, 40(4): 90-99. YANG M, XIA C J, YAN J.Analysis of the current situation and prospect of image database construction from the perspective of digital humanities[J]. Library journal, 2021, 40(4): 90-99. [2] 楚敏南. 基于卷积神经网络的图像分类技术研究[D]. 湘潭: 湘潭大学, 2015. CHU M N.Research of image classification technology based on convolutional neural network[D]. Xiangtan: Xiangtan University, 2015. [3] 马艳春, 刘永坚, 解庆, 等. 自动图像标注技术综述[J]. 计算机研究与发展, 2020, 57(11): 2348-2374. MA Y C, LIU Y J, XIE Q, et al.Review of automatic image annotation technology[J]. Journal of computer research and development, 2020, 57(11): 2348-2374. [4] 杨真真, 匡楠, 范露, 等. 基于卷积神经网络的图像分类算法综述[J]. 信号处理, 2018, 34(12): 1474-1489. YANG Z Z, KUANG N, FAN L, et al.Review of image classification algorithms based on convolutional neural networks[J]. Journal of signal processing, 2018, 34(12): 1474-1489. [5] OQUAB M, BOTTOU L, LAPTEV I, et al.Learning and transferring mid-level image representations using convolutional neural networks[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2014: 1717-1724. [6] 郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12): 20-36. ZHENG Y P, LI G Y, LI Y.Survey of application of deep learning in image recognition[J]. Computer engineering and applications, 2019, 55(12): 20-36. [7] 宋光慧. 基于迁移学习与深度卷积特征的图像标注方法研究[D]. 杭州: 浙江大学, 2017. SONG G H.Image annotation method based on transfer learning and deep convolutional feature[D]. Hangzhou: Zhejiang University, 2017. [8] 王海沣, 邓柯, 陈静. 基于卷积神经网络的近代报纸广告图片聚类方法[J]. 数字人文, 2021(2): 50-61. WANG H F, DENG K, CHEN J.Clustering methods of modern newspaper advertisements via convolutional neural network[J]. Digital humanities, 2021(2): 50-61. [9] 殷婕, 曾子明, 孙守强. 基于深度学习和哈希方法的敦煌壁画移动视觉搜索研究[J]. 现代情报, 2023, 43(5): 35-45, 78. YIN J, ZENG Z M, SUN S Q.Research on the mobile visual search of Dunhuang murals based on deep learning and hashing[J]. Journal of modern information, 2023, 43(5): 35-45, 78. [10] 高亚琪, 王昊, 刘渊晨. 图像语义特征的探索及其对分类的影响研究[J]. 情报科学, 2021, 39(10): 107-117. GAO Y Q, WANG H, LIU Y C.A study on the exploring of image semantic features and their influence on classification[J]. Information science, 2021, 39(10): 107-117. [11] 杨建梁, 刘越男. 机器学习在档案管理中的应用:进展与挑战[J]. 档案学通讯, 2019(6): 48-56. YANG J L, LIU Y N.The application of machine learning in archives management: Progress and challenges[J]. Archives science 12 bulletin, 2019(6): 48-56. [12] SCHUETTPELZ E, FRANDSEN P, DIKOW R, et al.Applications of deep convolutional neural networks to digitized natural history collections[J]. Biodiversity data journal, 2017, 5: e21139. [13] 武苏雯, 赵慧杰, 刘鑫, 等. 基于迁移学习的图像分类在诗词中的应用研究[J]. 计算机技术与发展, 2021, 31(7): 215-220. WU S W, ZHAO H J, LIU X, et al.Research on application of image classification based on transfer learning in poetry[J]. Computer technology and development, 2021, 31(7): 215-220. [14] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-05-25]. http://arxiv.org/abs/1409.1556. [15] TAN M X, LE Q V.EfficientNet: Rethinking model scaling for convolutional neural networks[EB/OL].[2023-04-09]. https://doi.org/10.48550/arXiv.1905.11946. [16] DENG J, DONG W, SOCHER R, et al.ImageNet: A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2009: 248-255. [17] 陈涛, 单蓉蓉, 李惠. 数字人文中图像资源的语义化标注研究[J]. 农业图书情报学报, 2020, 32(9): 6-14. CHEN T, SHAN R R, LI H.Semantic annotation of image resources in digital humanities[J]. Journal of library and information science in agriculture, 2020, 32(9): 6-14. [18] 陈金菊. 图像语义标注研究综述[J]. 图书馆学研究, 2017(18): 2-7, 20. CHEN J J.A review of image semantic annotation research[J]. Research on library science, 2017(18): 2-7, 20. |