农业图书情报学报 ›› 2023, Vol. 35 ›› Issue (2): 45-60.doi: 10.13998/j.cnki.issn1002-1248.23-0084

• 数字营销专题 • 上一篇    下一篇

基于CLV偏好挖掘模型的数字社区用户偏好挖掘研究

肖耘1, 许欢欢1, 肖雅元1, 赵又霖2,3,*, 庞航远3   

  1. 1.广西中烟工业有限责任公司,南宁 530001;
    2.南京大学 信息管理学院,南京 210023;
    3.河海大学 商学院,南京 211100
  • 收稿日期:2023-01-10 发布日期:2023-04-28
  • 通讯作者: *赵又霖(1986- ),女,副教授,博士生导师,南京大学博士后,河海大学商学院,研究方向为数据分析与挖掘、知识组织研究。E-mail:20140068@hhu.edu.cn
  • 作者简介:肖耘(1971- ),硕士,研究方向为“互联网+”营销产品产品研发、生产与运营。许欢欢(1988- ),女,硕士,研究方向为互联网营销及研究。肖雅元(1988- ),女,研究方向为互联网营销及研究。庞航远(2002- ),女,硕士研究生,研究方向为知识组织研究
  • 基金资助:
    广西中烟工业有限责任公司科技项目“基于机器学习方法的营销活动效果动态评估”(CGAXZX20210030050001-044); 江苏省社会科学基金青年基金“社会感知数据驱动下的公共卫生事件时空演化研判机制研究”(20TQC001); 中国博士后科学基金特别资助“面向应急管理的时空数据语义模 型构建及创新应用机理研究”(2021T140311); 中国博士后科学基金面上项目“环境污染突发事件的时空数据挖掘及协同治理机制研究”(2019M650108)

User Preference Mining in Digital Community Based on CLV Preference Mining Model

XIAO Yun1, XU Huanhuan1, XIAO Yayuan1, ZHAO Youlin2,3,*, PANG Hangyuan3   

  1. 1. Guangxi China Tobacco Industry Co., Ltd., Nanning 530001;
    2. School of Information Management, Nanjing University, Nanjing 210023;
    3. Business School of Hohai University, Nanjing 211100
  • Received:2023-01-10 Published:2023-04-28

摘要: [目的/意义]数字社区已经成为企业高效管理用户的一种方式,用户行为信息以及用户的客户生命周期价值对数字社区的用户偏好挖掘具有重要意义。且现有的数字社区研究缺乏对用户价值和未来偏好挖掘的研究。[方法/过程]针对数字社区的用户群体,本文提出基于客户生命周期价值CLV(Customer Lifetime Value,CLV)的偏好挖掘模型CLV-PM(CLV-Preference Mining,CLV-PM)。首先,为反映用户真实偏好,基于用户行为信息,借助RFM模型和K-Means++算法挖掘用户群体特征,生成用户价值类别标签;其次,为考虑用户时序性和差异性以及增强模型对偏好的认知,利用用户CLV构建用户-评分矩阵,并借助协同过滤算法挖掘用户预测偏好;最后,绘制数字社区目标用户的用户偏好画像。[结果/结论]“微信社群”管理平台的用户数据集中,可划分为重要价值用户、低价值用户、回流用户和重要挽留用户4种用户价值类别;目标用户16254为重要价值用户,采取“留存和维持”为主的运营策略;历史偏好为欢乐跳一跳、秒杀等活动,预测偏好为飞行棋大作战、猜码图等活动,目标用户偏好画像为数字社区运营和维护用户提供依据。

关键词: CLV-PM, 协同过滤, 数字社区, 用户偏好, 信息行为

Abstract: [Purpose/Significance] Digital communities have become a way for enterprises to manage users efficiently. The existing research on digital community rarely considers the importance of user behavior information and user's customer life cycle value to the mining of user preferences in digital community. This research aims to give full play to the digital community's characteristics such as intuitive, convenient, interesting, and interactive properties so that the research results can benefit every user in their use of the digital community and every enterprise in their user management. [Method/Process] Aiming at the user groups in digital community, this paper proposes a preference mining model ClV-Preference mining (CLV-PM) based on Customer Lifetime Value (CLV). First, in order to reflect the real preferences of users, the three indicators of the RFM model are used to quantify user behavior information, and the group characteristics of users are mined through K-mean ++ algorithm to generate user value category labels. Second, in order to consider the timeliness and difference of users and enhance the model's cognition of preferences, this paper uses the entropy weight method to solve the indicator weights of each activity, obtains user CLV to construct user-project scoring matrix, and uses the collaborative filtering algorithm to predict user preferences. Finally, based on the user value category, user historical preference and user forecast preference, the user preference profile of target users in digital community is generated, and feasible suggestions are put forward for the operation and maintenance of target users according to the user preference profile. [Results/Conclusions] The user dataset of the "Wechat community" management platform can be divided into four user value categories: important value users, low value users, returned users and important retention users. Target users 16254 are important value users, and the operation strategy of "retention and maintenance" is adopted. The historical preferences are happy hop, sec-kill and other activities; the prediction preference is flying chess battle, guessing code map and other activities; the target user preference sketch provides the basis for the operation and maintenance of users in the digital community. In terms of data source, the CLV-PM model proposed in this paper directly reflects user preferences based on user behavior information and reduces the problem of score distortion. To provide a new perspective for the research of user behavior in digital community, the construction of user-project scoring matrix based on user CLV fully considers the user value of digital community and provides a new direction for the extension and application of CLV. However, due to limited research space, this paper did not conduct model evaluation research on the proposed model, which can be further discussed in subsequent studies.

Key words: CLV-PM, collaborative filtering, digital community, user preference, information behavior

中图分类号: 

  • G250

引用本文

肖耘, 许欢欢, 肖雅元, 赵又霖, 庞航远. 基于CLV偏好挖掘模型的数字社区用户偏好挖掘研究[J]. 农业图书情报学报, 2023, 35(2): 45-60.

XIAO Yun, XU Huanhuan, XIAO Yayuan, ZHAO Youlin, PANG Hangyuan. User Preference Mining in Digital Community Based on CLV Preference Mining Model[J]. Journal of Library and Information Science in Agriculture, 2023, 35(2): 45-60.