农业图书情报学报 ›› 2023, Vol. 35 ›› Issue (9): 43-56.doi: 10.13998/j.cnki.issn1002-1248.23-0691

• 研究论文 • 上一篇    下一篇

中国农村留守儿童教育研究二十年——基于结构主题模型

王兴1, 李叶叶2,*, 周天宇3, 刘峰4   

  1. 1.中国科学院成都文献情报中心,成都 610299;
    2.海南大学 管理学院,海口 570100;
    3.合肥工业大学 人工智能学院,宣城 242000;
    4.濉溪县韩村中心学校小湖小学,淮北 235100
  • 收稿日期:2023-08-06 出版日期:2023-09-05 发布日期:2024-01-12
  • 通讯作者: *李叶叶(1994- ),女,博士研究生,研究方向为教育管理研究。E-mail:liyeye0320@126.com
  • 作者简介:王兴(1994- ),男,博士,中级,研究方向为文本挖掘。周天宇(2002- ),男,本科生,研究方向为人工智能、自然语言处理研究。刘峰(1976- ),男,专科,研究方向为留守儿童教育研究
  • 基金资助:
    2022年度中国科学院成都文献情报中心创新基金青年项目“基于STM主题模型的学科交叉主题识别与演化趋势研究”(E3Z0000303)

Twenty Years of Left-Behind Children Education in Rural China: Based on Structural Topic Model

WANG Xing1, LI Yeye2,*, ZHOU Tianyu3, LIU Feng4   

  1. 1. Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610299;
    2. School of Management, Hainan University, Haikou 570100;
    3. School of Artificial Intelligence, Hefei University of Technology, Xuancheng, China;
    4. Suixi County Hancun Central School Xiaohu Primary School, Huaibei 235100
  • Received:2023-08-06 Online:2023-09-05 Published:2024-01-12

摘要: [目的/意义]随着国家扶贫政策和乡村振兴战略的提出,留守儿童教育问题引起了学者们的特别关注。然而,留守儿童教育的研究文献是零星和分散的,需要系统性的探讨。该研究的目的在于揭示留守儿童教育研究成果的主题内容及其演化规律,以为政策制定和实践提供更深入的理论支持。[方法/过程]该研究以2002年至2023年期间发表的2 037篇期刊文献摘要文本构建语料库,使用了基于结构主题模型方法对语料库进行主题建模,从主题多样性和动态性的角度来研究相关的现存文献及发展趋势。[结果/结论]通过主题建模的分析,最终确定了8个关键研究主题,分别是心理健康、留守儿童产生的前因、应对策略(宏观)、监护类型、综述类研究、家庭教育、媒介素养、应对策略(微观)。最后,在此基础上提出了未来的研究方向。

关键词: 留守儿童, 主题建模, 结构主题模型, 信息素养

Abstract: [Purpose/Significance] The introduction of national poverty alleviation policies and rural revitalization strategies has thrust the issue of education for left-behind children into the spotlight of scholarly attention. Education, far beyond serving as a mere instrument for personal growth and human capital accumulation for left-behind children, emerges as a pivotal measure in consolidating rural poverty alleviation endeavors and breaking the transmission of intergenerational poverty in China. It stands as a vital force propelling the future of rural revitalization. Yet, the existing literature on the education of left-behind children remains sporadic and dispersed. A more profound organizational effort, integrating, synthesizing, and evaluating this scattered literature, is imperative to establish a foundational framework for future research, fostering more cohesive and focused research endeavors. Presently, literature review studies primarily fall into three categories: qualitative review methods, meta-analysis, and bibliometric analysis methods employing tools like Citespace. This study sets out to achieve a systematic and comprehensive understanding of education-related issues for rural left-behind children through text mining methods grounded in topic models. [Method/Process] The advent of artificial intelligence and machine learning technologies has empowered the processing and analysis of vast amounts of textual data. Previous research, employing latent dirichlet allocation (LDA) topic models, successfully mined texts related to teacher team construction reform policies, internationalization in higher education literature, news reports, and online comments. In this study, a corpus was meticulously constructed using abstract texts extracted from 2037 journal articles published between 2002 and 2023. The structural topic model (STM) was chosen for topic modeling, overcoming the limitations associated with LDA, with a specific emphasis on exploring the diversity and dynamism of topics within the existing literature. [Results/Conclusions] The culmination of this research effort identified eight distinct research themes: psychological well-being, factors leading to left-behind children, macro-level coping strategies, types of guardianship, review studies, family education, media literacy, and micro-level coping strategies. By synergizing document metadata information, the study systematically unraveled the evolving trends of these topics over time, providing crucial insights into potential shifts in the focus of left-behind children's education research. It is essential to note that this study, while collecting abstracts instead of full texts, may not capture the entirety of information contained in complete research articles. Future research endeavors should explore left-behind children's education more comprehensively, leveraging full-text mining techniques for a more nuanced understanding of this critical subject.

Key words: left-behind children, topic model, structural topic model, information literacy

中图分类号: 

  • G35

引用本文

王兴, 李叶叶, 周天宇, 刘峰. 中国农村留守儿童教育研究二十年——基于结构主题模型[J]. 农业图书情报学报, 2023, 35(9): 43-56.

WANG Xing, LI Yeye, ZHOU Tianyu, LIU Feng. Twenty Years of Left-Behind Children Education in Rural China: Based on Structural Topic Model[J]. Journal of Library and Information Science in Agriculture, 2023, 35(9): 43-56.