中文    English

›› 2016, Vol. 28 ›› Issue (9): 66-74.doi: 10.13998/j.cnki.issn1002-1248.2016.09.015

• Work study • Previous Articles     Next Articles

Strategies of User Information Consumption Guarantee and Implementation in big data age

LU Hao-dong   

  1. Hezhou University Library, Guangxi Hezhou 542899, China
  • Received:2016-01-14 Online:2016-09-05 Published:2016-09-08

Abstract: At present, new trend has appeared in the development of information consumption. Library is not only an organization which storing, processing, organizing and utilizing information, but also a knowledge sharing space promoting user information consumption. In big data age, it is necessary to strengthen the legal protection of user information, because the safeguard for user's information consumption rights is most fundamental. There are three standards measuring user information consumption, including user information literacy competency, quality of information products and service, and information consumption environment. library should enhance the effective supply of products and service, pay attention to user information literacy education, cultivate the new growth of information consumption market, optimize the structure of information products and the layout of information industry, and build a safe and reliable information consumption environment.

Key words: Big data

CLC Number: 

  • G252
[1] 杜平.2014中国信息年鉴[M].北京:中国信息年鉴期刊社,2011.
[2] Cox M,Ellsworth D.Application-controlled Demand Paging for Out-of-core Visualization[C].Proceedings of the 8th Conference on Visualization97.IEEE Computer Society Press,1997.
[3] The New York Times.Harvard Releases Big Data for Books[EB/OL].[2015-3-11].http://bits.blogs.ny-times.com/2012/04/24/ harvard-releases-big-data-for-books/.
[4] Audrey Watters.Strata Week: Harvard Library releases big data for its books: Harvard offers big data for books,Cloudera's new Hadoop distribu tion,Splunk goes public[EB/OL].[2015-3-11].http://radar.oreilly.com/2012/04 harvard-book-data-cloudera-hadoop-splunk-ipo.Html.
[5] WACME H, VGELE T,VISSER U, et al. Ontology-based integration of information-a survey of existing approaches[A].In: Proceedings of IJCAI’OI Workshop on Ontologies and Information Sharing[C].San Francisco: Morgan Kaufmann, 2001.
[6] 陆浩东.基于本体的用户信息消费效益实现研究[J].图书馆学刊,2014,(12):26-31.
[7] 陆浩东.基于知识本体的用户信息消费问题和对策研究[J].图书馆学研究,2015,(9):46-52,93.
[8] 滕广青,等.知识组织体系的解构与重构[J]. 情报理论与实践,2011,(9):15-18.
[9] 李宁,李秉严.知识挖掘技术及应用[J].情报杂志,2003,(6):28-32.
[10] 王艳.数据挖掘在数字图书馆中的应用[J].情报科学,2003,(2):53-56.
[11] 樊伟红,等. 图书馆需要怎样的“大数据”[J].图书馆杂志,2012,(11):66-68,77.
[12] Digital Book World.New Start-Up Aims to Be Google Analytics for E-Books[EB/OL].[2015-3-13].http: //www.Digital book world.com/2015/ new-start-up-aims-to-be-google-analytics-for-e-books /.
[13] 樊伟红,等. 图书馆需要怎样的“大数据”[J].图书馆杂志,2012,(11):63-68,77.
[14] 王新筠,王海欣.大数据背景下图书馆知识服务的思考[J].图书馆工作与研究,2014(,11):75-78.
[15] 中国互联网络信息中心.2013年中国网民信息安全状况研究报告http://www.cnnic.cn/hlwfzyj/hlwxzbg/mtbg/201312/p02013121935990
5417826.pdf.
[16] 国家信息中心,中国信息协会.中国信息年鉴 2014[M].北京:中国信息年鉴期刊社,2014.
[17] Big Data: Seizing Opportunities, Preserving Values[EB/OL]. [2014-06-15].http://www.whitehouse.gov/sites/default/files/docs/big_data_
privacy_report_may_1_2014.pdf.
[18] 凯文·凯利:屏幕构成完整生态系统.http://tech.qq.com/a/20150510/013401.htm,2015-5-10.
[19] 陆浩东.从“马太效应”看图书馆公共信息服务均等化推进[J].图书馆论坛,2011,(2):18-21.
[20] 刘晨延.我国信息消费有效需求不足的原因及对策[J].新视野.2012,(2):48-51.
[21] 徐建武,等.我国科技信息资源消费行为研究[J].数字图书馆论坛,2014,(12):36-39.
[22] 刘勇,王学勤.新生代农民工信息素养现状及提升策略研究:以浙江省为例[J].图书馆工作与研究,2014,(7):16-18,34.
[23] 朱红.信息消费理论、方法及水平测度[M].北京:科学文献出版社,2005.
[24] 周秀梅,田莉.基于微信公众平台的图书馆信息服务营销[J].图书馆工作与研究,2014,(3):36-39.
[25] 顾云.用户强制信息消费效果评价研究[D].华中师范大学,2013,
[26] 胡神松.我国知识产权教育与文化战略研究[D].武汉理工大学,2012,
[27] 中国信息产业年鉴编委会.中国信息产业年鉴 2011[M].北京:电子工业出版社,2011,
[28] 唐军荣.我国消费者的信息消费行为研究[D].华中师范大学,2006,
[29] 靖继鹏.应用信息经济学[M].北京:科学出版社.2002,
[30] 朱红.论企业信息公开的风险及其规避方法[J].情报理论与实践,2003,(5):433-434.
[31] Vandenberg, John.J.Risk“Assessment and Research: an Essential Link”[J].Toxicology,79(1995):19.
[1] CHANG ZhiJun, XU LiYuan, YU QianQian, ZHANG JianYong, WANG YongJi. Scientific and Technical Literature Data Management System Based on Life Cycle Model [J]. Journal of Library and Information Science in Agriculture, 2022, 34(6): 36-49.
[2] SONG Kai, RAN Congjing. Digital Technologies Aid Intelligent Epidemic Prevention and Control: Community-based Rapid Detection and Tracking Platform of COVID-19 [J]. Journal of Library and Information Science in Agriculture, 2022, 34(5): 92-101.
[3] SONG Shanshan, BAI Wenlin. A Review of Big Data Governance Research in China [J]. Journal of Library and Information Science in Agriculture, 2022, 34(4): 4-17.
[4] CHAI Miaoling, ZOU Yixing, TAN Rongzhi, ZENG Yi, REN Yunyue. Research and Practice on Association of Scientific Data and Scientific Literature Oriented to Knowledge Service of Agricultural Industry [J]. Journal of Library and Information Science in Agriculture, 2022, 34(3): 37-50.
[5] FENG Maolin, DONG Jianfeng. Construction of the Rural Information Service Platform under Big Data Environment [J]. Journal of Library and Information Science in Agriculture, 2021, 33(7): 63-71.
[6] SUN Tan, HUANG Yongwen, XIAN Guojian, CUI Yunpeng, LIU Juan. Considerations for the Development of Agricultural Informatization Driven by a New Generation of Information Technologies [J]. Journal of Library and Information Science in Agriculture, 2021, 33(3): 4-15.
[7] CAO Shujin, YUE Wenyu. Research on Library User Profiles for Precision Services [J]. Journal of Library and Information Science in Agriculture, 2021, 33(10): 4-19.
[8] LIU Yiming, JIANG Xinyu, DUAN Yizhi. Block Chain Technology: Promoting the Digital Resource Construction of University Library in Big Data Era [J]. Journal of Library and Information Science in Agriculture, 2020, 32(6): 15-22.
[9] MA Xiaoyue, XUE Pengzhen. The Cross-integration Development Path of Information Science and Communication Science in the Background of Artificial Intelligence and Big Data [J]. Journal of Library and Information Science in Agriculture, 2020, 32(3): 37-43.
[10] JIANG Enbo, LI Na. Analysis and Evaluation of Chinese Open Government Agricultural Data [J]. Journal of Library and Information Science in Agriculture, 2020, 32(10): 4-15.
[11] ZHAO Ruixue, LI Jiao, ZHANG Jie, ZHANG Dandan. Construction of Multi-Scenario Agricultural Knowledge Service System [J]. Journal of Library and Information Science in Agriculture, 2020, 32(1): 4-11.
[12] LI Xueqing, ZHENG Meiyu, WU Jianhong, HUANG Changqing, XUE Hua. Research on University Libraries Personalized Services Based on Big Data and ontology Technology [J]. Agricultural Library and Information, 2019, 31(9): 75-81.
[13] DU Jian. Biomedical Knowledge Discovery Based on Big Data Linkage Analysis [J]. Agricultural Library and Information, 2019, 31(3): 4-9.
[14] HOU Ru. On the Expansion of Evaluation in Humanities and Social Sciences field in Big Data Environment [J]. Agricultural Library and Information, 2019, 31(2): 36-42.
[15] LIU Wenjiang, HU Zhidan, JIA Fengling. Research on the Development Trend of Big Data in Library and Information Science of China [J]. Agricultural Library and Information, 2019, 31(12): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!