中文    English

Journal of Library and Information Science in Agriculture ›› 2024, Vol. 36 ›› Issue (11): 20-32.doi: 10.13998/j.cnki.issn1002-1248.24-0721

;

Previous Articles     Next Articles

AIGC Using Behavior Analysis from the Perspective of Artificial Intelligence Literacy

Yuhong CUI, Jintao ZHAO()   

  1. Beijing Institute of Technology, Beijing 100081
  • Received:2024-10-09 Online:2024-11-05 Published:2025-04-09
  • Contact: Jintao ZHAO

Abstract:

[Purpose/Significance] The development of artificial intelligence generated content (AIGC) technology has engendered novel prospects for the establishment of creating inclusive and expansive learning environments. In light of the potential risks associated with the misuse of AIGC tools, the present study analyzes the factors influencing students' use of AIGC tools within the context of artificial intelligence literacy. It constructs a conceptual model framework and explores the relational paths among influencing variables, aiming to provide a theoretical basis for the advancement of AI literacy education in libraries and other educational institutions. [Method/Process] This study adopts a mixed-method approach that primarily integrates Structural Equation Modeling (SEM) and mediation analysis to explore the relationships between the factors that influence AIGC tool usage. A conceptual relationship model was constructed based on the Technology Acceptance Model (TAM), which is widely utilized model for assessing users' acceptance of new technologies. The study builds on this model by adding AI literacy as a key variable to examine its moderating role in shaping the students' use of AIGC tools. The data were collected via a survey disseminated to university students who have used AIGC tools. The survey incorporated a series of inquiries designed to assess constructs such as effort expectancy, performance expectancy, behavioral intention, AI literacy, and actual usage of the tools. The SEM approach was employed to assess the proposed hypotheses and to validate the relationships between the identified factors. Mediation analysis was employed to assess indirect effects between variables. [Results/Conclusions] The findings indicate that effort expectancy exerts a direct impact on the actual use of AIGC tools by students, and indirectly promotes usage behavior through performance expectancy and behavioral intention. Furthermore, AI literacy plays a crucial role in improving the conversion rate from intention to actual usage. Specifically, AI literacy significantly enhances students' acceptance of AIGC tools, especially in terms of increasing their practical ability to use these tools effectively. The research also identifies key factors that influence students' use of AIGC tools, such as performance expectancy, effort expectancy, and behavioral intention, and highlights the significant moderating effect of AI literacy on the relationships among these factors. This study provides empirical evidence for the effective integration of AIGC technology into the education sector and offers theoretical guidance for libraries and educational organizations on how to design AI literacy education programs that help students adapt to a digitally driven society. Future research may encompass a more extensive examination of the utilization of AIGC tools across different academic disciplines, with a particular emphasis on their implementation in specialized domains. Additionally, the proposed model may be refined to better accommodate a wider range of educational contexts and learning scenarios.

Key words: AI-generated content, artificial intelligence literacy, technology acceptance models, Chat-GPT

CLC Number: 

  • G40

Fig.1

Research model"

Table 1

Measuring question items using AIGC influence variables"

变量 题项
努力期望EE 学习如何使用AIGC对我来说很容易
与AIGC的互动通俗易懂
AIGC易于使用来管理与发现知识
AIGC使用用户界面友好
AIGC易于访问
绩效期望PE AIGC在日常学习中提供所寻求的完整的相关信息
AIGC是搜索引擎的更好替代品
使用AIGC可以帮助我提高生产力更快完成任务
使用AIGC有助于理解与工作/学术相关的概念
使用AIGC有助于提高我的科研水平
行为意图BI 我会选择从AIGC获取知识与信息资源
值得向其他人推荐AIGC
我有兴趣在未来工作/科研更频繁地使用AIGC
人工智能素养AI 有足够的专业知识为自己使用AIGC提供技术支持
我能够利用AIGC找到需要的信息和内容
我知道如何验证AIGC生成内容是否可信
使用后能够评估当前AIGC产品的能力和局限性
实际使用AU 您实际使用AIGC工具的频率

Table 2

Results of reliability test"

潜变量 观测变量 标准化因子载荷
EE(感知易用性) Cronbach α=0.936
学习如何使用AIGC对我来说很容易 0.808
与AIGC互动通俗易懂 0.905
AIGC易于用来管理和发现知识 0.913
AIGC使用的用户界面友好 0.898
AIGC易于访问 0.809
PE(感知有用性) Cronbach α=0.947
AIGC能在日常学习中提供所寻求的完整信息 0.878
使用AIGC可以帮助我提高生产力更快完成任务 0.890
使用AIGC有助于理解与工作/科研中相关的概念 0.907
使用AIGC有助于提高我的科研水平 0.903
BI(行为意图) Cronbach α=0.953
我会选择继续从AIGC工具获取知识与信息资源 0.919
我愿意推荐其他人使用AIGC工具 0.899
我会保持或增加使用AIGC工具频率 0.912
我支持提供AIGC工具 0.928
AI(人工智能素养) Cronbach α=0.939
有足够的专业知识为自己使用AIGC提供技术支持 0.893
我能够利用AIGC找到需要的信息和内容 0.889
我知道如何验证AIGC生成内容是否可信 0.885
使用后能够评估当前AIGC产品的能力和局限性 0.899
AU(实际使用) Cronbach α=0.968
使用AIGC是搜索引擎的更好替代品? 0.869
您使用生成式人工智能工具频率如何? 0.614

Fig.2

Model normalized data results"

Table 3

Hypothetical model path analysis"

假设 假设路径 估计值 SE CR值 显著性 假设判断
H1:努力期望与绩效期望呈正相关 EE→PE 0.514 0.061 8.323 *** 支持
H2:努力期望与使用AIGC行为意图呈正相关 EE→BI -0.009 0.053 -0.159 .874 不支持
H3:努力期望与AIGC的实际使用呈正相关 EE→AU -0.023 0.069 -0.340 .734 不支持
H4:绩效期望与使用AIGC行为意图呈正相关 PE→BI 0.777 0.070 10.755 *** 支持
H5:绩效期望与AIGC的实际使用情况呈正相关 PE→AU 0.751 0.137 5.548 *** 支持
H8:行为意图与AIGC的实际使用呈正相关 BI→AU 0.058 0.126 0.479 .632 不支持
H10a:人工智能素养与绩效期望呈正相关 AI→EE 0.635 0.055 0.996 *** 支持
H10b:人工智能素养与绩效期望呈正相关 AI→PE 0.402 0.050 6.951 *** 支持
H10c:人工智能素养与行为意图呈正相关 AI→BI 0.187 0.043 3.610 *** 支持
H10d:人工智能素养与实际使用呈正相关 AI→AU 0.237 0.058 3.546 *** 支持

Table 4

Analysis of intermediation effects"

假设 中介路径 Effects BoostSE Bootstrap 95% CIs
LLCI ULCI
H6 EE→PE→BI 0.529 6 0.057 2 0.420 0 0.643 3
H7 EE→PE→BI→AU 0.194 8 0.028 7 0.130 7 0.245 4
H9 PE→BI→AU 0.153 5 0.039 9 0.078 0 0.236 1
H11 PE→AI→BI 0.147 0 0.041 5 0.072 5 0.232 7
H12 BI→AI→AU 0.119 3 0.026 8 0.069 9 0.174 9
1
刘金海. 2023十大新兴技术[J]. 世界科学, 2023(9): 34-39.
LIU J H. Top ten emerging technologies in 2023[J]. World science, 2023(9): 34-39.
2
ALBRECHT S. ChatGPT und andere computermodelle zur sprachverarbeitung - grundlagen, anwendungspotenziale und mögliche auswirkungen[R]. Karlsruhe: Institut für Technikfolgenabschätzung und Systemanalyse, 2019.
3
KASNECI E, SESSLER K, KÜCHEMANN S, et al. ChatGPT for good? On opportunities and challenges of large language models for education[J]. Learning and individual differences, 2023, 1: 9.
4
VON GARREL J, JAHN C, SCHRÖTER D. Der einsatz Künstlicher intelligenz in produzierenden unternehmen[J]. Zeitschrift für wirtschaftlichen fabrikbetrieb, 2022, 117(5): 338-343.
5
LE F. How ChatGPT is transforming the postdoc experience[J]. Nature, 2023, 622: 655.
6
VON GARREL J, MAYER J. Which features of AI-based tools are important for students? A choice-based conjoint analysis[J]. Computers and Education: Artificial Intelligence, 2024, 1:8.
7
JAVAID M, HALEEM A, SINGH R P, et al. Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system[J]. BenchCouncil transactions on benchmarks, standards and evaluations, 2023, 3(2): 1-12.
8
张一春, 钟秋菊, 任屹远. 高校教学信息化创新发展的核心内容与实践进路——基于教育数字化转型的TASH视角[J]. 电化教育研究, 2024, 45(2): 71-76, 83.
ZHANG Y C, ZHONG Q J, REN Y Y. The core content and practical approach of innovative development of teaching informatization in colleges and universities: Based on the TASH perspective of digital transformation of education[J]. China industrial economics, 45(2): 71-76, 83.
9
肖银洁, 吕宏山. 教育数字化赋能高校教学新形态的风险审视与纾解路向[J]. 大学教育科学, 2023, 14(2): 24-32, 92.
XIAO Y J, LV H S. Digital technology in teaching and learning in university education: Risk review and mitigation path[J]. University education science, 2023, 14(2): 24-32, 92.
10
吴青, 刘毓文. ChatGPT时代的高等教育应对: 禁止还是变革[J]. 高校教育管理, 2023, 17(3): 32-41.
WU Q, LIU Y W. Higher education response in the era of ChatGPT: Prohibition or reform[J]. Journal of higher education management, 2023, 17(3): 32-41.
11
苗逢春. 生成式人工智能及其教育应用的基本争议和对策[J]. 开放教育研究, 2024, 30(1): 4-15.
MIAO F C. Generative AI and its uses in education: Foundational controversies and responding strategies[J]. Open education research, 2024, 30(1): 4-15.
12
盛大林, 吴星晔, 钟笑寒. 新高考改革中的科目选考机制: 一个博弈论分析[J]. 经济学(季刊), 2024, 24(1): 17-29.
SHENG D L, WU X Y, ZHONG X H. Subject selection mechanism in Chinese college entrance exam: A game-theoretical study[J]. China economic quarterly, 2024, 24(1): 17-29.
13
袁曾. 生成式人工智能治理的法律回应[J]. 上海大学学报(社会科学版), 2024, 41(1): 28-39.
YUAN Z. Infrastructure for generative AI governance[J]. Journal of Shanghai University (social sciences edition), 2024, 41(1): 28-39.
14
朱莎, 杨洒, 李嘉源, 等. 智慧课堂情境的课程核心素养评价范式[J]. 开放教育研究, 2024, 30(1): 83-88.
ZHU S, YANG S, LI J Y, et al. Paradigm for evaluating core competencies in smart classroom courses[J]. Open education research, 2024, 30(1): 83-88.
15
刘贵华, 孟照海. 论中国教育学自主知识体系建设[J]. 华东师范大学学报(教育科学版), 2024, 42(2): 1-17.
LIU G H, MENG Z H. On the construction of independent knowledge system of Chinese pedagogy[J]. Journal of East China normal university (educational sciences), 2024, 42(2): 1-17.
16
李帅帅, 何向真, 张跃洲, 等. 融合多情感的语音驱动虚拟说话人生成方法[J]. 计算机应用研究, 2024, 41(8): 2546-2553.
LI S S, HE X Z, ZHANG Y Z, et al. Multi-emotion driven virtual speaker generation method integrating multiple emotions[J]. Application research of computers, 2024, 41(8): 2546-2553.
17
赵晓伟, 戴岭, 沈书生, 等. 促进高意识学习的教育提示语设计[J]. 开放教育研究, 2024, 30(1): 44-54.
ZHAO X W, DAI L, SHEN S S, et al. Design of educational prompts to facilitate higher consciousness learning[J]. Open education research, 2024, 30(1): 44-54.
18
PATEL S B, LAM K. ChatGPT: The future of discharge summaries?[J]. The lancet digital health, 2023, 5(3): e107-e108.
19
郑旭东, 马云飞, 岳婷燕. 欧盟教师数字胜任力框架: 技术创新教师发展的新指南[J]. 电化教育研究, 2021, 42(2): 121-128.
ZHENG X D, MA Y F, YUE T Y. European framework for digital competence of educators: A new guide to technological innovation for teacher development[J]. E-education research, 2021, 42(2): 121-128.
20
邱燕楠, 李政涛. 挑战·融合·变革: “ChatGPT与未来教育” 会议综述[J]. 现代远程教育研究, 2023, 35(3): 3-12, 21.
QIU Y N, LI Z T. Challenges, integration and changes: A review of the conference on ChatGPT and future education[J]. Modern distance education research, 2023, 35(3): 3-12, 21.
21
李书宁, 刘一鸣. ChatGPT类智能对话工具兴起对图书馆行业的机遇与挑战[J]. 图书馆论坛, 2023, 43(5): 104-110.
LI S N, LIU Y M. Opportunities and challenges for library from the rise of ChatGPT-like intelligent chat tools[J]. Library tribune, 2023, 43(5): 104-110.
22
卢宇, 余京蕾, 陈鹏鹤, 等. 生成式人工智能的教育应用与展望——以ChatGPT系统为例[J]. 中国远程教育, 2023, 43(4): 24-31, 51.
LU Y, YU J L, CHEN P H, et al. Educational application and prospect of generative artificial intelligence: Taking ChatGPT system as an example[J]. Chinese journal of distance education, 2023, 43(4): 24-31, 51.
23
宋雪雁, 王萍. 信息采纳行为概念及影响因素研究[J]. 情报科学, 2010, 28(5): 760-762, 767.
SONG X Y, WANG P. Research on concept and effective factors of information adoption behavior[J]. Information science, 2010, 28(5): 760-762, 767.
24
DAVIS F D. Perceived usefulness, perceived ease of use, and user acceptance of information technology[J]. MIS quarterly, 1989, 13(3): 319.
25
SHIN D. User perceptions of algorithmic decisions in the personalized AI system: Perceptual evaluation of fairness, accountability, transparency, and explainability[J]. Journal of broadcasting & electronic media, 2020, 64(4): 541-565.
26
JO H, BANG Y. Analyzing ChatGPT adoption drivers with the TOEK framework[J]. Scientific reports, 2023, 13(1): 1-17.
27
DUONG C D, VU T N, NGO T V N. Applying a modified technology acceptance model to explain higher education students' usage of ChatGPT: A serial multiple mediation model with knowledge sharing as a moderator[J]. The international journal of management education, 2023, 21(3):1-18.
28
毛太田, 汤淦, 马家伟, 等. 人工智能生成内容(AIGC)用户采纳意愿影响因素识别研究——以ChatGPT为例[J]. 情报科学, 2024, 42(7): 126-136.
MAO T T, TANG G, MA J W, et al. Factors influencing user adoption intention of artificial intelligence generated content(AIGC): A study on ChatGPT[J]. Information Science, 2024, 42(7): 126-136.
29
曹晶, 叶继元, 朱强, 等. 影响用户访问全国信息资源保障平台行为意向的因素分析[J]. 图书馆杂志, 2023, 42(10): 104-116.
CAO J, YE J Y, ZHU Q, et al. An analysis of factors impacting users' behavioral intentions of accessing national document information resource guarantee platforms[J]. Library journal, 2023, 42(10): 104-116.
30
王超, 顾小清. OMO教学的推进: 以中小学生在线学习参与意愿为切入点突破在线教学困境: 基于技术接受模型的实证研究[J]. 现代教育技术, 2022, 32(2): 72-80.
WANG C, GU X Q. The promotion of OMO education: Breaking through the predicament of online teaching by taking primary and secondary school students' participation willingness of online learning as penetration point: Empirical research based on technology acceptance[J]. Modern educational technology, 2022, 32(2): 72-80.
31
王军, 程文婷. 教育类移动应用技术接受模型构建[J]. 图书情报工作, 2017, 61(16): 60-65.
WANG J, CHENG W T. Educational mobile application acceptance model construction[J]. Library and information service, 2017, 61(16): 60-65.
32
SEPASGOZAR S M E. Immersive on-the-job training module development and modeling users' behavior using parametric multi-group analysis: A modified educational technology acceptance model[J]. Technology in society, 2022, 68: 1-13.
33
LIM W M, GUNASEKARA A, PALLANT J L, et al. Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators[J]. The international journal of management education, 2023, 21(2): 1-13.
34
ALASMARI T, ZHANG K. Mobile learning technology acceptance in Saudi Arabian higher education: An extended framework and A mixed-method study[J]. Education and information technologies, 2019, 24(3): 2127-2144.
35
张晓丹, 江洪, 王可慧. 学术APP用户采纳意愿影响因素实证研究[J]. 图书情报工作, 2018, 62(18): 90-101.
ZHANG X D, JIANG H, WANG K H. An empirical study of the influential factors on users' adoption willingness of academic app[J]. Library and information service, 2018, 62(18): 90-101.
36
李武, 胡泊, 季丹. 电子书阅读客户端的用户使用意愿研究: 基于UTAUT和VAM理论视角[J]. 图书馆论坛, 2018, 38(4): 103-110.
LI W, HU B, JI D. Understanding the behavioral incentive of using E-book reader apps: An investigation from UTAUT and VAM perspectives[J]. Library tribune, 2018, 38(4): 103-110.
37
DUONG C D, BUI D T, PHAM H T, et al. How effort expectancy and performance expectancy interact to trigger higher education students' uses of ChatGPT for learning[J]. Interactive technology and smart education, 2024, 21(3): 356-380.
38
KAO W K, HUANG Y S. Service robots in full- and limited-service restaurants: Extending technology acceptance model[J]. Journal of hospitality and tourism management, 2023, 54: 10-21.
39
VON GARREL J, MAYER J. Artificial Intelligence in studies: Use of ChatGPT and AI-based tools among students in Germany[J]. Humanities and social sciences communications, 2023, 10: 799.
40
祝智庭, 戴岭, 胡姣. AIGC技术赋能高等教育数字化转型的新思路[J]. 中国高教研究, 2023(6): 12-19, 34.
ZHU Z T, DAI L, HU J. AIGC technology enables new ideas for digital transformation of higher education[J]. China higher education research, 2023(6): 12-19, 34.
41
LAI Y, SAAB N, ADMIRAAL W. University students' use of mobile technology in self-directed language learning: Using the integrative model of behavior prediction[J]. Computers & education, 2022, 179: 1-13.
42
王树胜, 王俊菊. 动机驱动的AI赋能外语学习接受度研究——基于技术接受模型[J]. 外语电化教学, 2024(6): 23-29, 108.
WANG S S, WANG J J. A study of motivation-driven acceptance of AI use in foreign language learning: Based on the technology acceptance model[J]. Technology enhanced foreign language education, 2024(6): 23-29, 108.
43
洪学婷, 张宏梅, 张业臣. Airbnb平台的使用意愿与使用行为: 对技术接受模型的扩展[J]. 地域研究与开发, 2021, 40(4): 91-95, 117.
HONG X T, ZHANG H M, ZHANG Y C. Intention and use behavior of the airbnb platform: The extension of the technology acceptance model[J]. Areal research and development, 2021, 40(4): 91-95, 117.
44
万力勇, 杜静, 熊若欣. 人机共创: 基于AIGC的数字化教育资源开发新范式[J]. 现代远程教育研究, 2023, 35(5): 12-21.
WAN L Y, DU J, XIONG R X. Human-machine co-creation: A new paradigm for the development of digital educational resources based on AIGC[J]. Modern distance education research, 2023, 35(5): 12-21.
45
钟柏昌, 刘晓凡, 杨明欢. 何谓人工智能素养: 本质、构成与评价体系[J]. 华东师范大学学报(教育科学版), 2024, 42(1): 71-84.
ZHONG B C, LIU X F, YANG M H. What is artificial intelligence(AI) competency: Essence, composition and evaluation systems[J]. Journal of East China normal university (educational sciences), 2024, 42(1): 71-84.
46
罗国锋, 刘清生, 易童. 新质人才培养视域下高校图书馆人工智能素养教育内容与策略研究[J]. 图书馆学研究, 2025(1): 85-93.
LUO G F, LIU Q S, YI T. Research on the content and strategy of AI literacy education in university libraries from the perspective of cultivation of new quality productive forces talents[J]. Research on library science, 2025(1): 85-93.
47
郭亚军, 寇旭颍, 冯思倩, 等. 人工智能素养: 内涵剖析与评估标准构建[J]. 图书馆论坛, 2025, 45(2): 42-50.
GUO Y J, KOU X Y, FENG S Q, et al. Artificial intelligence literacy: Connotation analysis and evaluation criteria[J]. Library tribune, 2025, 45(2): 42-50.
48
AL-AZAWEI A, ALOWAYR A. Predicting the intention to use and hedonic motivation for mobile learning: A comparative study in two Middle Eastern countries[J]. Technology in society, 2020, 62: 1-12.
49
MENON D, SHILPA K. "Chatting with ChatGPT": Analyzing the factors influencing users' intention to use the open AI's ChatGPT using the UTAUT model[J]. Heliyon, 2023, 9(11): 1-19.
50
VENKATESH, THONG, XU. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology[J]. MIS quarterly, 2012, 36(1): 157.
51
GURSOY D, CHI O H, LU L, et al. Consumers acceptance of artificially intelligent (AI) device use in service delivery[J]. International journal of information management, 2019, 49: 157-169.
52
AL-EMRAN M, MEZHUYEV V, KAMALUDIN A. Towards a conceptual model for examining the impact of knowledge management factors on mobile learning acceptance[J]. Technology in society, 2020, 61: 1-13.
53
ZHU S, YANG H H, WU D, et al. Investigating the relationship between information literacy and social media competence among university students[J]. Journal of educational computing research, 2021, 59(7): 1425-1449.
54
PINTO M. From competencies to threshold concepts through the information literate university. A faculty's perspective[J]. The journal of academic librarianship, 2022, 48(3): 1-8.
[1] ZHAO Ruixue, HUANG Yongwen, MA Weilu, DONG Wenjia, XIAN Guojian, SUN Tan. Insights and Reflections of the Impact of ChatGPT on Intelligent Knowledge Services in Libraries [J]. Journal of Library and Information Science in Agriculture, 2023, 35(1): 29-38.
Viewed
Full text
40
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
3 0 4 4 0 29

  From Others local
  Times 22 18
  Rate 55% 45%

Abstract
719
Just accepted Online first Issue
27 0 692
  From Others local
  Times 711 8
  Rate 99% 1%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!