中文    English

Journal of Library and Information Science in Agriculture

   

Addressing the Knowledge Worker AI Literacy Gap with AI Technology

Shuyi WANG1, Wen ZENG1, Weishi ZHANG2, Junjie LI1   

  1. 1.School of Management, Tianjin Normal University, Tianjin 300387
    2.School of Geography, Tianjin Normal University, Tianjin 300387
  • Received:2024-07-11 Online:2024-11-19

Abstract:

[Purpose/Significance] With the proliferation of artificial intelligence (AI) technology, knowledge workers' basic understanding of AI and their ability to evaluate its application, known as AI literacy, is particularly important. This study addresses the current state of the AI literacy gap among knowledge workers and explores how AI technology itself can be used to bridge this gap, with the goal of shortening the AI literacy gap. The article analyzes the reasons for the existence of the AI gap in multiple dimensions and the need to bridge the AI gap. In today's era of proliferating AI tools, mastering the use of AI tools and improving AI literacy is the best assistant for knowledge workers. Learning to use AI tools can significantly improve the efficiency of information collection, processing, and storage, and greatly facilitate the building of information resources. [Method/Process] From the dimensions of cognition, practice, and assessment, the study explores how AI technology can assist in enhancing AI literacy. At the cognitive level, the research examines how AI agents can provide personalized knowledge services and help users build a systematic body of knowledge in a particular domain; at the practical level, it analyzes how AI tools can simplify professional tasks such as data analysis, and suggests how to improve knowledge workers' own ways and means of using AI tools through human-computer interaction and mastering effective AI problem-solving aids; at the assessment level, the application of AI tools in verifying the authenticity of information and the importance of the "human-in-the-loop" model in AI applications are discussed, emphasizing the need for human oversight. The article comprehensively draws on the excellent literature on AI, library intelligence, and learning literacy at home and abroad, and combines its own practical situation of using AI tools to achieve AI literacy, which helps knowledge workers establish basic cognition, practical operation ability, and evaluation of answer results. [Results/Conclusions] AI technology has significant advantages in closing the AI literacy gap. AI agents can provide customized knowledge explanation based on user needs, and AI tools can automate the execution of professional tasks and provide factual evidence. These applications not only compensate for the shortcomings of traditional educational methods but also offer new directions for innovation in the field of education. In presenting the arguments, the number of AI tools chosen is small, but fundamentally representative of the problem. Subsequent research will focus on improving AI literacy from other perspectives, and on ways and means to make knowledge workers more comfortable with AI tools. With the continuous development of AI technology, its role in enhancing AI literacy will become more pronounced, contributing to the construction of a more intelligent and efficient information environment.

Key words: knowledge workers, artificial intelligence, AI literacy

CLC Number: 

  • G312

Table 1

Summary of AI literacy issue types in existing research"

归类作者提出的具体问题
认知类SIREGAR K E(2024)现有的教育课程往往未能有效整合AI相关内容,导致学生无法获得必要的知识和技能,许多教育体系的课程设计未能跟上技术发展的步伐,缺乏对AI的系统性教育[26]
认知类SIAHAAN R(2023)数字素养的差距,在提升AI素养的过程中,学生和教育工作者的数字素养水平参差不齐,这种差距直接影响了AI教育的效果。数字素养的提高是实现AI素养提升的前提,但当前的教育体系未能有效解决这一问题[27]
实践类SAPUTRA I(2023)教育机构在整合AI技术时面临的高成本是一个普遍问题,教师在AI相关领域的专业培训不足,导致他们无法有效教授AI相关的技术课程[28]
实践类CASAL-OTERO L(2023)许多教育体系的课程设计未能跟上技术发展的步伐,缺乏对AI的系统性教育[29]
评估类PALADHI M M(2024)目前尚未建立起统一的AI素养评估标准,不同机构和研究者使用的评估方法各不相同。这种缺乏标准化的情况使得评估结果难以比较和推广[30]
评估类NG D T K(2021)现有的评估方法往往只关注AI知识和技能的掌握情况,忽视了对AI的批判性思考和伦理意识的评估[31]
评估类LINTNER T(2024)评估工具的可靠性和信效度不足,目前用于评估AI素养的工具大多缺乏足够的信效度检验,无法确保评估结果的准确性和一致性[32]

Fig.1

Research roadmap"

Fig.2

Results of searching "ChatGPT Training Principles" on Wikipedia"

Fig.3

Results of universal primer inquiry on "ChatGPT Training Principles""

Fig.4

Traditional "Machine Learning Classification Model" modeling steps"

Fig.5

Presentation of the automated results of ZhiPu QingYan's "Machine Learning Classification Model""

Fig.6

Incorrect solution of the football match problem by the "Mistral Nemo 12B Starcannon" model"

Fig.7

Vague solution to the football match problem by the "Tongyi Qianwen" model"

Fig.8

Correct solution to the football match problem by the "Wenxin Yiyan" model"

Fig.9

Incorrect solution to the comparison problem by the "ChatGPT-4o" model"

1 杜华, 杜楠楠. 我国智能素养研究热点及发展趋势——基于共词分析的可视化研究[J]. 教育信息技术, 2022(6): 44-47.
DU H, DU N N. Research hotspots and development trends of intelligence literacy in China - Visualization research based on co-word analysis[J]. Educational information technology, 2022(6): 44-47.
2 闫志明, 唐夏夏, 秦旋, 等. 教育人工智能(EAI)的内涵、关键技术与应用趋势——美国《为人工智能的未来做好准备》和《国家人工智能研发战略规划》报告解析[J]. 远程教育杂志, 2017, 35(1): 26-35.
YAN Z M, TANG X X, QIN X, et al. The connotations, key technologies and application trends of educational artificial intelligence(EAI): Interpretation and analysis of the two reports entitled "preparing for the future of artificial intelligence" and "the national artificial intelligence"[J]. Journal of distance education, 2017, 35(1): 26-35.
3 陈颖博, 张文兰. 国外教育人工智能的研究热点、趋势和启示[J]. 开放教育研究, 2019, 25(4): 43-58.
CHEN Y B, ZHANG W L. Hotspot, trend, and enlightenment of educational artificial intelligence research abroad[J]. Open education research, 2019, 25(4): 43-58.
4 北京部分中小学校开设人工智能课: 小粉丝迷上前沿新知[EB/OL]. [2024-04-23]. .
5 谭礼园, 涂涛, 李轩涯, 等. 基于EasyDL平台的小学AI课程教学设计与实践[J]. 计算机教育, 2022(7): 12-16.
TAN L Y, TU T, LI X Y, et al. Teaching design and practice of AI course in primary schools based on EasyDL platform[J]. Computer education, 2022(7): 12-16.
6 8岁小孩哥上手用AI制作游戏, 全程2小时, 引来50多万人围观[EB/OL]. [2024-04-23]. .
7 “比肩”ChatGPT之父奥特曼, 中国“AI教父”李一舟靠卖课年入 5000万[EB/OL]. [2024-04-23]. .
8 黄如花, 石乐怡, 吴应强, 等. 全球视野下我国人工智能素养教育内容框架的构建[J]. 图书情报知识, 2024, 41(3): 27-37.
HUANG R H, SHI L Y, WU Y Q, et al. Constructing content framework for artificial intelligence literacy instruction in China from a global perspective[J]. Documentation, information & knowledge, 2024, 41(3): 27-37.
9 全市 103所学校获评智慧校园示范校 AI进教室 课堂大变样[EB/OL]. [2024-04-23]. .
10 北京: 明年大中小学普遍开展人工智能应用[EB/OL]. [2024-04-23]. .
11 要大规模扫除青壮年人工智能盲, 提高全民人工智能素养[EB/OL]. [2024-04-23]. .
12 2024年中国AI教育行业研究报告[EB/OL]. [2024-04-23]. .
13 教育部发布 4项行动助推人工智能赋能教育[EB/OL]. [2024-04-23]. .
14 申小玲. 整合技术手段 提升英语素养——浅谈多媒体技术下的初中英语教学[J]. 新课程导学, 2015(10): 35.
SHEN X L. Integrating technical means to improve English literacy - On junior high school English teaching under multimedia technology[J]. New course introduction, 2015(10): 35.
15 赵艳芳. 现代教育技术在初中语文教学中的应用[J]. 家长, 2020(15): 48, 50.
ZHAO Y F. The application of modern educational technology in junior middle school Chinese teaching[J]. Parents, 2020(15): 48, 50.
16 GUPTA V, DIXIT A. Recent query reformulation approaches for information retrieval system - A survey[J]. Recent advances in computer science and communications, 2023, 16(1): 10-25.
17 SHARMA S, PANDA S P. Efficient information retrieval model: Overcoming challenges in search engines-an overview[J]. Indonesian journal of electrical engineering and computer science, 2023, 32(2): 925.
18 刘奕伶. 环境数据开放视阈下的公众参与环境治理——基于对国内三市政府环境数据开放现状的维度分析[J]. 安徽行政学院学报, 2018, 9(4): 106-112.
LIU Y L. New opportunities for public participation in environmental governance: Open government environmental data - An analysis of the dimensions of the openness of environmental data in China's 3 cities[J]. Journal of Anhui administration institute, 2018, 9(4): 106-112.
19 HONG K C, SHIBGHATULLAH A S BIN. Decoding ERP training for non-technical users: A novel algorithm-driven framework for enhanced training effectiveness[C]//2024 IEEE 9th International Conference for Convergence in Technology (I2CT). Piscataway, New Jersey: IEEE, 2024: 1-5.
20 VALVERDE-REBAZA J, GONZÁLEZ A, NAVARRO-HINOJOSA O, et al. Advanced large language models and visualization tools for data analytics learning[J]. Frontiers in education, 2024, 9: 1418006.
21 关真, 孟聿. 信息-动机-行为模式在老年起搏器植入术患者康复护理中的应用研究[J]. 中国医药指南, 2016, 14(23): 253-254.
GUAN Z, MENG Y. Application of information-motivation-behavior model in rehabilitation nursing of elderly patients with pacemaker implantation[J]. Guide of China medicine, 2016, 14(23): 253-254.
22 吴先华, 蔡正平, 郭际. 产业集群中本地知识溢出(LKS)问题的西方文献综述[J].科技管理研究, 2008, 28(1): 242-244.
WU X H, CAI Z P, GUO J. A review of western literature on local knowledge spillover (LKS) in industrial clusters[J]. Science and technology management research, 2008, 28(1): 242-244.
23 斯图亚特·霍尔, 孔智键. 马克思论方法: 读1857年《导言》[J]. 山东社会科学, 2016(7): 5-23.
STUART H, KONG Z J. Marx's theory of method: Reading introduction in 1857[J]. Shandong social sciences, 2016(7): 5-23.
24 董正信, 周博. 利率对消费、投资、股价、汇率影响的实证研究[J]. 河北大学成人教育学院学报, 2007, 9(4): 104-106.
DONG Z X, ZHOU B. The empirical research of interest rates' influences to consuming, investment, stock price and rate of exchange[J]. Journal of adult education college of Hebei university, 2007, 9(4): 104-106.
25 GENYS M, MARIJUS V. Veiksnių poveikis žinių darbuotojų polinkiui naudotis generatyviuoju dirbtiniu intelektu[D]. Vilnius: Vilniaus Universitetas, 2024.
26 SIREGAR K E. Increasing digital literacy in education: Analysis of challenges and opportunities through literature study[J]. International journal of multilingual education and applied linguistics, 2024, 1(2): 10-25.
27 SIAHAAN R D R, SIRAIT G. The importance of digital literacy in the era of society 5.0[J]. Indo-MathEdu intellectuals journal, 2023, 4(3): 1734-1742.
28 SAPUTRA I, ASTUTI M, SAYUTI M, et al. Integration of artificial intelligence in education: Opportunities, challenges, threats and obstacles. A literature review[J]. The Indonesian journal of computer science, 2023, 12(4): 10-25.
29 CASAL-OTERO L, CATALA A, FERNÁNDEZ-MORANTE C, et al. AI literacy in K-12: A systematic literature review[J]. International journal of STEM education, 2023, 10(1): 29.
30 SUBAVEERAPANDIYAN A, PALADHI M M, MARUTHAVEER AN V. Evaluating AI literacy proficiency among LIS researchers in ASEAN[J]. Library hi tech news, 2024, 41(4): 6-8.
31 NG D T K, LEUNG J K L, CHU K W S, et al. AI literacy: Definition, teaching, evaluation and ethical issues[J]. Proceedings of the association for information science and technology, 2021, 58(1): 504-509.
32 LINTNER T. A systematic review of AI literacy scales[J]. NPJ science of learning, 2024, 9: 50.
33 搜索引擎要变天了[EB/OL]. [2024-04-23]. .
34 人工智能如何赋能教育[EB/OL]. [2024-04-23]. .
35 DONG X Y, TIAN Y X, HE M M, et al. When knowledge workers meet AI? The double-edged sword effects of AI adoption on innovative work behavior[J]. Journal of knowledge management, 2024: 1-35. .
36 申亚欣. 当AIGC遇上全国两会报道[J]. 青年记者, 2023(7): 1.
SHEN Y X. When AIGC meets the report of the National People’s Congress[J]. Youth journalist, 2023(7): 1.
37 朱蕊. 基于人工智能的图书馆文献自动检索机器人设计[J]. 自动化与仪器仪表, 2023(6): 192-194.
ZHU R. Design of automatic library literature retrieval robot based on artificial intelligence[J]. Automation & instrumentation, 2023(6): 192-194.
38 罗国锋, 刘清生. ChatGPT赋能高校信息素养教育应用场景与实践研究[J]. 农业图书情报学报, 2024, 36(4): 91-101.
LUO G F, LIU Q S. Application scene and practice of ChatGPT empowering information literacy education[J]. Journal of library and information science in agriculture, 2024, 36(4): 91-101.
39 周琼, 徐亚苹, 蔡迎春. 高校学生人工智能素养能力现状及影响因素多维分析[J]. 图书情报知识, 2024, 41(3): 38-48.
ZHOU Q, XU Y P, CAI Y C. An examination of AI literacy among university students: Current status and multifaceted influencing factors[J]. Documentation, information & knowledge, 2024, 41(3): 38-48.
40 索尼推出AI音乐制作服务[J]. 智能城市, 2020, 6(5): 17.
Sony launches AI music production service[J]. Intelligent city, 2020, 6(5): 17.
41 警惕“AI污染”乱象[EB/OL]. [2024-04-23]. .
42 引人注意的十大由AI造成的灾难案例[EB/OL]. [2024-04-23]. .
43 张智雄, 曾建勋, 夏翠娟, 等. 回应AIGC的信息资源管理学人思考[J]. 农业图书情报学报, 2023, 35(1): 4-28.
ZHANG Z X, ZENG J X, XIA C J, et al. Information resource management researchers' thinking about the opportunities and challenges of AIGC[J]. Journal of library and information science in agriculture, 2023, 35(1): 4-28.
[1] Mo LI, Bin YANG. From Generative Artificial Intelligence to Artificial General Intelligence: Enabling Innovation Models in Library Knowledge Services [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 50-61.
[2] Xiaolin ZHANG. Beyond Resources, Beyond Technologies, Beyond One's Institution: Developing New Productive Forces for Knowledge Services through Reform and Innovation of Traditional Knowledge Service Mechanisms [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 4-15.
[3] PENG Lihui, ZHANG Qiong, LI Tianyi. Risk of AI Algorithmic Discrimination Embedded in Government Data Governance and Its Prevention and Control [J]. Journal of Library and Information Science in Agriculture, 2024, 36(5): 23-31.
[4] LUO Guofeng, LIU Qingsheng. Application Scene and Practice of ChatGPT Empowering Information Literacy Education [J]. Journal of Library and Information Science in Agriculture, 2024, 36(4): 91-101.
[5] LI Mengli, WANG Ying, QIAN Li, XIE Jing, CHANG Zhijun, JIA Haiqing. Building an Scientific and Technological Talent Database for New Quality Productive Forces [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 15-25.
[6] ZOU Yayi. ChatGPT Strengthens Library Intelligence Services: Opportunities, Challenges and Development Strategies [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 71-80.
[7] WANG Weizheng, QIAO Hong, LI Xiaojun, WANG Jingjing. User Willingness to Use Generative Artificial Intelligence Based on AIDUA Framework [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 36-50.
[8] WAN Qiao. Future Learning Centers: Educational Paradigms, Basic Characteristics and Space Construction [J]. Journal of Library and Information Science in Agriculture, 2023, 35(9): 57-65.
[9] LI Tian, ZHAO Ruixue, XIAN Guojian, KOU Yuantao. Agricultural Intelligent Knowledge Services to Enable Rural Revitalization: Internal Mechanism and Dilemma Relief [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 43-54.
[10] WANG Chao, KONG Xianghui. Application of Large-scale Pre-Training Language Model in Network Health Information Identification [J]. Journal of Library and Information Science in Agriculture, 2023, 35(6): 51-59.
[11] MA Lecun, ZHAN Xini, ZHU Qiyu, SUN Rong, LI Baiyang. Digital Intelligence Integration Innovation Development of GLAM Driven by AIGC [J]. Journal of Library and Information Science in Agriculture, 2023, 35(5): 4-15.
[12] LV Ruijuan, ZHANG Jingbei, YAN Dan, CAI Yingchun. Innovative Development of AIGC and GLAM: Review of "Shaping the Future: AIGC and GLAM Innovative Development" Cutting-Edge Academic Forum [J]. Journal of Library and Information Science in Agriculture, 2023, 35(5): 27-36.
[13] LI Peng, SONG Xigui. AIGC Technology Enables Innovative Applications in Library Reading Promotion [J]. Journal of Library and Information Science in Agriculture, 2023, 35(12): 84-93.
[14] GUO Pengrui, WEN Tingxiao. Research of the Impact of LLMs on Information Retrieval Systems and Users' Information Retrieval Behavior [J]. Journal of Library and Information Science in Agriculture, 2023, 35(11): 13-22.
[15] LIU Qiong, ZHOU Yunfeng, SU Wencheng, LIU Guifeng. Standardized Management System for Reading Promotion under AIGC Technology Environment [J]. Journal of Library and Information Science in Agriculture, 2023, 35(10): 48-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!