Journal of Library and Information Science in Agriculture ›› 2024, Vol. 36 ›› Issue (2): 26-35.doi: 10.13998/j.cnki.issn1002-1248.24-0191
Previous Articles Next Articles
WANG Shan1, TAN Zongying2,*
CLC Number:
[1] 习近平. 牢牢把握在国家发展大局中的战略定位奋力开创黑龙江高质量发展新局面[N]. 人民日报, 2023-09-09(1). [2] 中央经济工作会议在北京举行——习近平发表重要讲话李强作总结讲话赵乐际王沪宁蔡奇丁薛祥李希出席会议[N]. 人民日报, 2023-12-13(1). [3] 王珏. 新质生产力: 一个理论框架与指标体系[J]. 西北大学学报(哲学社会科学版), 2024, 54(1): 35-44. WANG J.New productive forces: A theoretical frame and index system[J]. Journal of northwest university (philosophy and social sciences edition), 2024, 54(1): 35-44. [4] 张玉臣, 谭礼. 关键核心技术的概念界定、特征辨析及突破路径[J]. 中国科技论坛, 2023(2): 20-29. ZHANG Y C, TAN L.Concept definition, characteristic discrimination and breakthrough path of key core technology[J]. Forum on science and technology in China, 2023(2): 20-29. [5] 胡登峰, 黄紫微, 冯楠, 等. 关键核心技术突破与国产替代路径及机制——科大讯飞智能语音技术纵向案例研究[J]. 管理世界, 2022, 38(5): 188-209. HU D F, HUANG Z W, FENG N, et al.Path and mechanism of core technology breakthrough and domestic substitution: A longitudinal case study of IFLY TEK intelligent speech technology[J]. Journal of management world, 2022, 38(5): 188-209. [6] KALE P, SINGH H, PERLMUTTER H.Learning and protection of proprietary assets in strategic alliances: Building relational capital[J]. Strategic management journal, 2000, 21(3): 217-237. [7] CANNICE M V, CHEN R R, DANIELS J D.Managing international technology transfer risk: Alternatives and complements to ownership structure[M]// Management International Review. Wiesbaden: Gabler Verlag, 2004: 129-152. [8] 王可达. 提高我国关键核心技术创新能力的路径研究[J]. 探求, 2019(2): 38-46. WANG K D.Research on the methods of improving the innovation of China's key core technology[J]. Academic search for truth and 9 reality, 2019(2): 38-46. [9] 韩凤芹, 史卫, 陈亚平. 以大战略观统领关键核心技术攻关[J]. 宏观经济研究, 2021(3): 111-119, 159. HAN F Q, SHI W, CHEN Y P.Leading key core technologies tack-ling key problems with a grand strategic view[J]. Macroeconomics, 2021(3): 111-119, 159. [10] 余维新, 熊文明. 关键核心技术军民融合协同创新机理及协同机制研究——基于创新链视角[J]. 技术经济与管理研究, 2020(12): 34-39. YU W X, XIONG W M.Research on the effect and mechanism of military-civilian synergy innovation of key technology - From innovation chain perspective[J]. Journal of technical economics & management, 2020(12): 34-39. [11] 汤志伟, 李昱璇, 张龙鹏. 中美贸易摩擦背景下“卡脖子”技术识别方法与突破路径——以电子信息产业为例[J]. 科技进步与对策, 2021, 38(1): 1-9. TANG Z W, LI Y X, ZHANG L P.Identification method and breakthrough path of "neck-jamming" technologies under the background of sino-US trade friction: A case of the electronic information industry[J]. Science & technology progress and policy, 2021, 38(1): 1-9. [12] 路风, 何鹏宇. 举国体制与重大突破——以特殊机构执行和完成重大任务的历史经验及启示[J]. 管理世界, 2021, 37(7): 1-18, 1. LU F, HE P Y.The new-type system of nationwide mobilization and breakthroughs: Historical experiences of accomplishing major tasks by special agencies and the lessons[J]. Journal of management world, 2021, 37(7): 1-18, 1. [13] 郭本海, 王鹏辉, 崔文海, 等. 考虑关键核心技术发展的我国集成电路产业政策效力研究[J]. 科技进步与对策, 2023, 40(3): 41-51. GUO B H, WANG P H, CUI W H, et al.The policy effectiveness of China's integrated circuit industry considering the development of key and core technologies[J]. Science & technology progress and policy, 2023, 40(3): 41-51. [14] 陈劲, 阳镇, 朱子钦. “十四五”时期“卡脖子”技术的破解: 识别框架、战略转向与突破路径[J]. 改革, 2020(12): 5-15. CHEN J, YANG Z, ZHU Z Q.The solution of "neck sticking" technology during the 14th five-year plan period: Identification framework, strategic change and breakthrough path[J]. Reform, 2020(12): 5-15. [15] 胡旭博, 原长弘. 关键核心技术: 概念、特征与突破因素[J]. 科学学研究, 2022, 40(1): 4-11. HU X B, YUAN C H.Key part of core technology: Concept, char-acters and breakthrough factors[J]. Studies in science of science, 2022, 40(1): 4-11. [16] GOVINDARAJAN V, KOPALLE P K.The usefulness of measuring disruptiveness of innovations ex post in making ex ante predictions[J]. Journal of product innovation management, 2006, 23(1): 12-18. [17] DIXON T, EAMES M, BRITNELL J, et al.Urban retrofitting: Iden-tifying disruptive and sustaining technologies using performative and foresight techniques[J]. Technological forecasting and social change, 2014, 89: 131-144. [18] 王秀红, 高敏. 基于BERT-LDA的关键技术识别方法及其实证研究——以农业机器人为例[J]. 图书情报工作, 2021, 65(22): 114-125. WANG X H, GAO M.The key technology identification method based on BERT-LDA and its empirical research: A case study of agricultural robots[J]. Library and information service, 2021, 65(22): 114-125. [19] 郑思佳, 汪雪锋, 刘玉琴, 等. 关键核心技术竞争态势评估研究[J]. 科研管理, 2021, 42(10): 1-10. ZHENG S J, WANG X F, LIU Y Q, et al.A research on evaluation of the competitive situation of key core technologies[J]. Science research management, 2021, 42(10): 1-10. [20] ZHANG Y, QIAN Y, HUANG Y, et al.An entropy-based indicator system for measuring the potential of patents in technological innovation: Rejecting moderation[J]. Scientometrics, 2017, 111(3): 1925-1946. [21] 陈旭, 江瑶, 熊焰, 等. 关键核心技术“卡脖子”问题的识别及应用: 以AI芯片为例[J]. 中国科技论坛, 2023(9): 17-27. CHEN X, JIANG Y, XIONG Y, et al.Identification and application of "bottleneck" issues in key core technologies: Taking AI chips as an example[J]. Forum on science and technology in China, 2023(9): 17-27. [22] LEE H, KIM C, CHO H, et al.An ANP-based technology network for identification of core technologies: A case of telecommunication technologies[J]. Expert systems with applications, 2009, 36(1): 894-908. [23] KRAFFT J, QUATRARO F, SAVIOTTI P P.The knowledge-base evolution in biotechnology: A social network analysis[J]. Economics of innovation and new technology, 2011, 20(5): 445-475. [24] 曹琨, 吴新年, 白光祖, 等. 基于专利文献的“卡脖子”技术识别研究——以数控机床领域为例[J]. 图书情报工作, 2023, 67(19): 80-91. CAO K, WU X N, BAI G Z, et al.Identification of "neck stuck" technologies based on patent literature: A case study in the field of CNC machine tools[J]. Library and information service, 2023, 67(19): 80-91. [25] FELDMAN R, SANGER J.Text mining handbook: Advanced ap-proaches in analyzing unstructured data[M]. New York, NY: Cam-bridge University Press, 2007 [26] WU J Y, SON G, WANG S H.A competency mining method based on latent dirichlet allocation(LDA) model[J]. Journal of physics: Conference series, 2020, 1682(1): 012059. [27] CHEN H S, ZHANG G Q, ZHU D H, et al.Topic-based technologi-cal forecasting based on patent data: A case study of Australian patents from 2000 to 2014[J]. Technological forecasting and social change, 2017, 119: 39-52. [28] 李维思, 谭力铭, 章国亮, 等. 基于多源信息融合的产业链关键核心技术主题识别研究——以人工智能领域为例[J]. 信息资源管理学报, 2022, 12(1): 116-126. LI W S, TAN L M, ZHANG G L, et al.Research on topic recogni-tion of key core technology in industrial chain based on multi-source information fusion: Taking AI as an example[J]. Journal of information resources management, 2022, 12(1): 116-126. [29] 桂美增. 基于智能方法的关键技术预测研究——以新能源汽车为例[D]. 上海: 上海大学, 2021. GUI M Z.Research on key technology forecasting based on intelligent methods[D]. Shanghai: Shanghai University, 2021. [30] 许学国, 桂美增. 基于机器学习的新能源汽车核心技术识别及布局研究[J]. 科技管理研究, 2021, 41(9): 96-106. XU X G, GUI M Z.Research on identification and layout of core technologies of new energy vehicles based on machine learning[J]. Science and technology management research, 2021, 41(9): 96-106. [31] 彭莹莹. 新质生产力的理论要素与实践要求[N]. 中国社会科学报, 2024-03-21(A03). [32] 梁玉春, 牛志远. 深刻认识和把握新质生产力[N]. 新疆日报, 2024-03-21(A05). [33] 邓岩, 陈燕娟. 种源“卡脖子” 问题的识别、成因与破解路径研究——以农作物种业为例[J]. 农业现代化研究, 2022, 43(1): 20-28. DENG Y, CHEN Y J.The identification, causes, and solution path of the germplasm resource bottleneck issue: A case study of China's crop seed industry[J]. Research of agricultural modernization, 2022, 43(1): 20-28. [34] 江瑶, 陈旭, 张凌恺. 专利视域下“卡脖子”技术三阶段识别研究[J]. 情报杂志, 2023, 42(10): 132-139, 55. JIANG Y, CHEN X, ZHANG L K.Research on the three-stage identification for "neck-jamming" technologies from the perspective of patents[J]. Journal of intelligence, 2023, 42(10): 132-139, 55. [35] 张庭珲. 新质生产力是绿色生产力[N]. 厦门日报, 2024-04-24(A08). [36] 赵建, 梁爽. 关键核心技术识别方法研究进展[J]. 情报杂志, 2024, 43(4): 68-77. ZHAO J, LIANG S.Research progress on identification methods of key core technologies[J]. Journal of intelligence, 2024, 43(4): 68-77. |
[1] | LI Mengli, WANG Ying, QIAN Li, XIE Jing, CHANG Zhijun, JIA Haiqing. Building an Scientific and Technological Talent Database for New Quality Productive Forces [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 15-25. |
[2] | ZHAO Ruixue, LI Tian, GUAN Zhihao, XIAN Guojian, KOU Yuantao, SUN Tan. Bidirectional Empowerment Between Knowledge Service and New Quality Productive Forces Theoretical Interpretation and Practical Path [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 4-14. |
[3] | XIA Yikun, JIANG Jie, ZHANG Xiaheng, WANG Jiandong, ZHOU Wenjie, YANG Xinya, LI Yang. Developing the New Quality Productivity: Responses and Reflections on the Discipline of Information Resource Management [J]. Journal of Library and Information Science in Agriculture, 2024, 36(1): 4-32. |
|