中文    English

Journal of Library and Information Science in Agriculture ›› 2022, Vol. 34 ›› Issue (8): 30-41.doi: 10.13998/j.cnki.issn1002-1248.22-0238

Previous Articles     Next Articles

Research Progress and Implementation of FAIR Principles for Scientific Data Management

CHEN Shuxian, LIU Guifeng*, LIU Qiong   

  1. Institute of science and technology information, Jiangsu University, Zhenjiang 212013
  • Received:2022-04-08 Online:2022-08-05 Published:2022-10-26

Abstract: [Purpose/Significance] With the development of data-intensive scientific research paradigm, the effective discovery and reuse of scientific data is of great significance to the sharing of research results. In order to promote scientific data utilization and improve the scientific value of data resources, the international academic community proposed the FAIR principles in 2016, aiming to promote data openness, which has so far attracted widespread attention from scholars at home and abroad. Many exploratory studies have been carried out around the FAIR principles, such as GO FAIR, and RDA, CODATA and other international organizations have been established to be devoted to open science and data sharing practices; the European Union, as the representative advocate of open science, has strongly promoted the implementation and promotion of the FAIR principles by establishing the European Open Science Cloud (EOSC) and introducing data policies, etc. The purpose of this paper is to provide a systematic and comprehensive overview of the academic achievements of FAIR principles, with the aim of providing references for the promotion and implementation of the principles and scientific data management practice in China. [Method/Process] This paper combines literature research and online research, and through content analysis, provides an in-depth analysis of literature on FAIR principles in terms of content interpretation, assessment methods, domain application, discipline application and regional application. It includes five perspectives of organization guarantee on FAIR principles, four basic principles of FAIR, practical exploration, disciplinary implementation and regional practice of FAIR principles to review the research progress and implementation of FAIR principles at home and abroad, focusing on exploring the practical value of FAIR principles, and systematically summarizing the research status and existing achievements. [Results/Conclusions] International research on FAIR principles focuses on theory, implementation strategies, and evaluation methods, For example, at the level of FAIR content, the four basic principles have been explored and discussed in practice; at the level of implementation strategies, many stakeholders have taken different measures to ensure the implementation of FAIR principles, and different organizations have developed evaluation methods. In addition, FAIR principles have been explored in the fields of medicine and other disciplines and are widely used in Europe and other regions. In contrast, domestic research is still in its infancy and national policy support and follow-up by relevant organizations is needed for further study and implementation of FAIR principles in China.

Key words: FAIR principles, scientific data, open science, data management, data sharing, data science

CLC Number: 

  • C01
[1] 吴建中. 推进开放数据助力开放科学[J]. 图书馆杂志, 2018, 37(2): 4-10.
WU J Z.Promoting open data to help open science[J]. Library journal, 2018, 37(2): 4-10.
[2] 邢文明, 郭安琪, 秦顺, 等. 科学数据管理与共享的FAIR原则——背景、内容与实施[J]. 信息资源管理学报, 2021, 11(2): 60-68, 84.
XING W M, GUO A Q, QIN S, et al.FAIR principles for scientific data management and sharing -Background, content and implementation[J]. Journal of information resource management, 2021, 11(2): 60-68, 84.
[3] WILKINSON, M, DUMONTIER, M, AALBERSBERG I, et al.The fair guiding principles for scientific data management and stewardship sci data[EB/OL]. [2022-02-10]. https://doi.org/10.1038/sdata.2016.18.
[4] 宋佳, 温亮明, 李洋. 科学数据共享FAIR原则: 背景、内容及实践[J]. 情报资料工作, 2021, 42(1): 57-68.
SONG J, WEN L M, LI Y.Scientific data sharing FAIR principles: Background, content and practice[J]. Information and documentation services, 2021, 42(1): 57-68.
[5] 戚筠, 何琳. 领域数据库的FAIR原则实践——以生物信息学为例[J/OL]. 图书馆论坛: 1-9[2022-05-18]. http://kns.cnki.net/kcms/detail/44.1306.G2.20211214.1148.003.html.
QI Y, HE L. Practice of FAIR principles for domain databases-The case of bioinformatics[J/OL]. Library Tribune: 1-9[2022-05-18].http://kns.cnki.net/kcms/detail/44.1306.G2.20211214.1148.003.html.
[6] 朱妍昕, 徐维, 王霞, 等. 基于FAIR原则的循证医学文献本体构建——以哮喘药物治疗文献本体为例[J]. 情报理论与实践, 2022, 45(1): 187-195.
ZHU Y X, XU W, WANG X, et al.Evidence-based medical literature ontology construction based on FAIR principles: An example of asthma drug therapy literature ontology[J]. Information studies: Theory & application, 2022, 45(1): 187-195.
[7] 邱春艳. 开放科学愿景下欧盟推进FAIR原则的路径、经验及启示[J]. 情报理论与实践, 2021, 44(5): 199-205.
QIU C Y.The path, experience and inspiration of the EU in promot-ing FAIR principles under the vision of open science[J]. Information studies: Theory & application, 2021, 44(5): 199-205.
[8] 翟军, 梁佳佳, 吕梦雪, 等. 欧盟开放科学数据的FAIR原则及启示[J]. 图书与情报, 2020(6): 103-111.
ZHAI J, LIANG J J, LV M X, et al.FAIR principles and inspiration of open scientific data in EU[J]. Library & information, 2020(6): 103-111.
[9] 邢文明, 肖嘉丽, 陈继丽. 面向FAIR原则的《科学数据管理办法》优化研究[J]. 图书馆论坛, 2022, 42(4): 86-95.
XING W M, XIAO J L, CHEN J L.Study on optimization of scien-tific data management approach oriented to FAIR principles[J]. Li-brary tribune, 2022, 42(4): 86-95.
[10] 潘小多, 李新, 冉有华, 等. 开放科学背景下的科学数据开放共享: 国家青藏高原科学数据中心的实践[J]. 大数据, 2022, 8(1): 113-120.
PAN X D, LI X, RAN Y H, et al.Open sharing of scientific data in the context of open science: The practice of the national Qinghai-Tibet plateau scientific data center[J]. Big data research, 2022, 8(1): 113-120.
[11] 王艳翠, 李书宁, 李爱红. 研究数据联盟——建立全球数据共享和数据交换的基础架构[J]. 图书馆理论与实践, 2015(1): 52-54, 73.
WANG Y C, LI S N, LI A H.Research data consortium-Establishing an infrastructure for global data sharing and data exchange[J]. Library theory and practice, 2015(1): 52-54, 73.
[12] The research data alliance builds the social and technical bridges to enable the open sharing and reuse of data[EB/OL].[2016-03-22].https://www.rd-alliance.org/about-rda.
[13] GO FAIR initiative[EB/OL]. [2021-12-22].https://www.go-fair.org/go-fair-initiative/.
[14] GO CHANGE[EB/OL]. [2021-12-22].https://www.go-fair.org/go-fair-initiative/go-change/.
[15] Vision and strategy[EB/OL]. [2021-12-22].https://www.go-fair.org/go-fair-initiative/vision-and-strategy/.
[16] CODATA's mission[EB/OL].[2021-12-22].https://codata.org/about-codata/our-mission/.
[17] JUTY N, WIMALARATNE S M, SOILAND-REYES S, et al.Unique, persistent, resolvable: Identifiers as the foundation of FAIR[J]. Data Intelligence, 2020, 2(1-2): 30-39.
[18] WEIGEL T, SCHWARDMANN U, LUMP J K, et al.Making data and workflows findable for machines[J]. Data intelligence 2020, 2(1): 8.
[19] BAREND M.FAIR Science for social machines: Let's share metadata knowlets in the internet of FAIR data and services[J]. Data intelligence, 2019, 1(1): 22-42.
[20] ANNALISA L, MARK T, VIVIANA G, et al.The "A" of FAIR - As open as possible, as closed as necessary[J]. Data intelligence, 2020, 2(1-2): 47-55.
[21] CHRISTOPHER B, BARRY N, STEPHAN R, et al.Ontology-based access control for FAIR data[J]. Data intelligence, 2020, 2(1-2): 66-77.
[22] IGNASI L, THOMAS M.Licensing FAIR data for reuse[J]. Data intelligence, 2020, 2(1-2): 199-207.
[23] PRYOR G.Why manage research data?[M]//Managing research data, London, England: Facet publishing, 2012: 1-16.
[24] BISHOP B W, HANK C, WEBSTER J, et al.Scientists' data discov-ery and reuse behavior: (Meta)data fitness for use and the FAIR data principles[J]. Proceedings of the association for information science and technology, 2019, 56(1): 21-31.
[25] GROTH P, COUSIJN H, CLARK T, et al.FAIR data reuse - The path through data citation[J]. Data intelligence, 2019, 2(1): 78-86.
[26] SANSONE S A, MCQUILTON P, ROCCA-SERRA P, et al.FAIR sharing as a community approach to standards, repositories and policies[J]. Nat biotechnol, 2019, 37: 358-367.
[27] PETER M, DOMINIQUE B, OYA B, et al.Helping the consumers and producers of standards, repositories and policies to enable FAIR data[J]. Data Intelligence, 2020, 2(1-2): 151-157.
[28] VAN VLIJMEN H, MONS A, WAALKENS A, et al.The need of Industry to go FAIR[J]. Data intelligence, 2020, 2: 276-284.
[29] MARGREET B, ANNALISA M.The FAIR funding model: Providing a framework for research funders to drive the transition toward FAIR data management and stewardship practices[J]. Data intelligence, 2020, 2(1-2): 171-180.
[30] HANA P S, KRISTINA M H, PETER W, et al.FAIR convergence matrix: Optimizing the reuse of existing FAIR-related resources[J]. Data Intelligence, 2020, 2(1-2): 158-170.
[31] WILKINSON M, SANSONE S A, SCHULTES E, et al.A design framework and exemplar metrics for FAIRness[J]. Sci data,2018, 5: 180118.
[32] BAHIM C, C CASORRáN-AMILBURU, DEKKERS M, et al. The FAIR data maturity model: An approach to harmonise FAIR assessments[J]. Data science journal, 2020, 19(1): 41.
[33] DEVARAJU A, MOKRANE M, CEPINSKAS L, et al.From Conceptualization to Implementation: FAIR Assessment of Research Data Objects[J]. Data science journal, 2021, 20(1): 1-14.
[34] RICARDO DE M A, MICHEL D. Considerations for the conduction and interpretation of FAIRness evaluations[J]. Data intelligence, 2020, 2(1-2): 285-292.
[35] THOMPSON M, BURGER K, KALIYAPERUMAL R, et al.Making FAIR easy with FAIR tools: From creolization to convergence[J]. Data intelligence, 2020, 2: 87-95.
[36] JACOBSEN A, KALIYAPERUMAL R, SANTOS L, et al.A generic workflow for the data FAIRification process[J]. Data intelligence, 2020, 2(1): 10.
[37] CAROLE G, SARAH C-B, STIAN S-R, et al.FAIR computational workflows[J]. Data intelligence, 2020, 2(1-2): 108-121.
[38] 杨啸林, 杨晟, 潘虹洁, 等. FAIR准则与生物医学数据标准应用服务[J]. 中国医学伦理学, 2020, 33(2): 153-159.
YANG X L, YANG S, PAN H J, et al.FAIR guidelines and appli-cation services for biomedical data standards[J]. Chinese medical ethics, 2020, 33(2): 153-159.
[39] 李皓琳, 姜勇. 临床研究数据管理与共享最新进展[J]. 中国卒中杂志, 2020, 15(6): 600-605.
LI H L, JIANG Y.Recent advances in clinical research data man-agement and sharing[J]. Chinese journal of stroke, 2020, 15(6): 600-605.
[40] ALEXANDER A, LAURA A, SHOSHANA B, et al.Implementation of the FAIR data principles for exploratory biomarker data from clinical trials[J]. Data intelligence, 2021, 3(4): 631-662.
[41] RDA and biodiversity[EB/OL].[2020-10-06].https://www.rd-alliance.org/rda-disciplines/rda-and-biodiversity.
[42] LARRY L, DIMITRIS K, ALEX R.FAIR data and services in biodiversity science and geoscience[J]. Data intelligence, 2020, 2(1-2): 122-130.
[43] Dissco in the research infrastructure landscape[EB/OL]. [2022-02-28].https://www.dissco.eu/dissco/ri-landscape/.
[44] SHELLEY S, LEAH M, LESLEY W, et al.Growing the FAIR community at the intersection of the geosciences and pure and applied chemistry[J]. Data intelligence, 2020, 2(1-2): 139-150.
[45] FREY J.Digital IUPAC[J]. Chemistry international newsmagazine for IUPAC, 2014, 36(1): 14-16.
[46] Expanding iupac standards for chemical information - Industry applications & stakeholder perspectives[EB/OL]. [2017-03-20].https://iupac.org/body/036.
[47] STALL S, YARMEY L R, BOEHM R, et al.Advancing FAIR data in Earth, space, and environmental science[J]. Eos, 2018, 99.
[48] Enabling fair data project commitment statement in the earth, space, and environmental sciences[EB/OL]. [2022-03-10].https://copdess.org/enabling-fair-data-project/commitment-statement-in-the-earth-space-and-environmental-sciences/.
[49] RDA and agriculture[EB/OL]. [2016-06-29].https://rd-alliance.org/rda-disciplines/rda-and-agriculture.
[50] RDA and linguistics[EB/OL].[2017-08-01].https://www.rd-alliance.org/rda-disciplines/rda-and-linguistics.
[51] RDA and the social sciences[EB/OL]. [2018-11-08].https://www.rd-alliance.org/rda-disciplines/rda-and-social-sciences.
[52] 郭翊. 日本开放科学的发展、现状以及对我国的启示[J]. 晋图学刊, 2021(2): 71-79.
GUO Y.The development of open science in Japan, its current situation, and the inspiration for China[J]. Shanxi library journal, 2021(2): 71-79.
[53] 王译晗, 叶钰铭. 近10年国内外开放科学研究述评[J]. 农业图书情报学报, 2021, 33(10): 20-35.
WANG Y H, YE Y M.Review on the Research of Open Science at Home and Abroad in Recent Ten Years[J]. Journal of Library and Information Science in Agriculture, 2021, 33(10): 20-35.
[54] ESFRI background[EB/OL]. [2022-03-12].https://www.esfri.eu/.
[55] ROADMAP 2018[EB/OL]. [2022-03-12]. http://roadmap2018.esfri.eu/media/1066/esfri-roadmap-2018.pdf.
[56] PETER W, FRANCISKA DE J, DIETER VAN U, et al.State of FAIRness in ESFRI projects[J]. Data intelligence, 2020, 2(1-2): 230-237.
[57] ROADMAP2021[EB/OL]. [2022-03-12]. https://roadmap2021.esfri.eu/media/1295/esfri-roadmap-2021.pdf.
[58] 王敬, 王彦兵. 德国通用科研数据基础设施项目GeRDI的建设与启示[J]. 农业图书情报学报, 2022, 34(3): 28-36.
WANG J, WANG Y B.The construction and inspiration of GeRDI, a general research data infrastructure project in germany[J]. Journal of library and information science in agriculture, 2022, 34(3): 28-36.
[59] 高芳, 王艺颖. 法国开放科学顶层设计与实践进展分析及启示[J]. 全球科技经济瞭望, 2021, 36(5): 1-11.
GAO F, WANG Y Y.Analysis of the progress of top-level design and practice of open science in France and its inspiration[J]. Global science, technology and economy outlook, 2021, 36(5): 1-11.
[60] VAN REISEN M, STOKMANS M, BASAJJA M, et al.Towards the tipping point of FAIR implementation[J]. Data intelligence, 2020, 2: 264-275.
[61] East Africa community, East African health research commission: Digital reach initiative roadmap[EB/OL].[2022-03-15].https://www.k4health.org/sites/default/files/digital-reach-initiative-roadmap.pdf.
[62] GO-FAIR in Africa: Manifesto and work plan[EB/OL]. [2022-03-15].https://www.go-fair.org/wp-content/uploads/2019/08/Activity-Plan-with-the-Manifesto-of-the-GO-FAIR-in-AFRICA-Final-1-August-2019.pdf.
[63] LUANA S, PATRíCIA H, VIVIANE V, et al. GO FAIR Brazil: A challenge for Brazilian data science[J]. Data intelligence, 2020, 2(1-2): 238-245.
[64] Brazilian law on access to information(LAI)[EB/OL]. [2011-11-18]. http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2011/lei/l12527.htm.
[65] National open data infrastructure(INDA)[EB/OL].[2022-03-17].https://www.governodigital.gov.br/transformacao/cidadania/dados-abertos/inda-infraestrutura-nacional-de-dados-abertos.
[66] GO FAIR Brazil declaration[EB/OL]. [2022-03-17].https://www.go-fair.org/wp-content/uploads/2019/06/Declaration_GO-FAIR-Brazil_Jun2019.pdf.
[67] FAIR funder collaboration: A pilot programme to make it easy for funders to require and for grantees to produce FAIR data[EB/OL]. [2022-03-17].https://arxiv.org/ftp/arxiv/papers/1902/1902.11162.pdf.
[1] CHEN Xuefei, HUANG Jinxia, WANG Fang. Open Science: Connotation of Open Innovation and Its Mechanism for Innovation Ecology [J]. Journal of Library and Information Science in Agriculture, 2022, 34(9): 5-14.
[2] XIAO Man, WANG Xuan, WANG Fang, HUANG Jinxia. Framework and Development Path of Open Science Capability [J]. Journal of Library and Information Science in Agriculture, 2022, 34(9): 15-28.
[3] LIU Jingyu, JIA Yujie, HUANG Jinxia, WANG Fang. Ethics Principle Framework of Data Handling for Open Scientific Innovation Ecology [J]. Journal of Library and Information Science in Agriculture, 2022, 34(9): 29-43.
[4] JIANG Lihui, YI Zhijun, HUANG Jinxia. Implementing UNESCO Recommendation on Open Science: Common and Inclusive Actions [J]. Journal of Library and Information Science in Agriculture, 2022, 34(9): 44-50.
[5] XING Wenming, LIU Wo. An Investigation on University Libraries' Service in Promoting the Implementation of FAIR Data Management Principles [J]. Journal of Library and Information Science in Agriculture, 2022, 34(7): 65-75.
[6] WANG Yihan, CHU Jingli. Quantitative Analysis and Enlightenment on Open Science Policy Texts in Scientific Research Institutions from the Perspective of Policy Tools [J]. Journal of Library and Information Science in Agriculture, 2022, 34(7): 39-52.
[7] CHANG ZhiJun, XU LiYuan, YU QianQian, ZHANG JianYong, WANG YongJi. Scientific and Technical Literature Data Management System Based on Life Cycle Model [J]. Journal of Library and Information Science in Agriculture, 2022, 34(6): 36-49.
[8] CHAI Miaoling, ZOU Yixing, TAN Rongzhi, ZENG Yi, REN Yunyue. Research and Practice on Association of Scientific Data and Scientific Literature Oriented to Knowledge Service of Agricultural Industry [J]. Journal of Library and Information Science in Agriculture, 2022, 34(3): 37-50.
[9] XIAO Keyi, QIN Jiajia, LI Yunfan. Practice and Enlightenment of Japanese University Libraries in Using Institutional Repositories for Research Data Management [J]. Journal of Library and Information Science in Agriculture, 2022, 34(11): 100-109.
[10] FAN Zhixuan, WANG Jian, SA Xu, ZHANG Guilan. Structure-Utility of Descriptive Information of Agricultural Scientific Data from the Perspective of Users [J]. Journal of Library and Information Science in Agriculture, 2022, 34(10): 57-69.
[11] HUANG Jinxia, WANG Xuan, YANG Heng, LIU Jingyu, ZHANG Zhixiong, LIU Xiwen. Summary of the 10th China OA Week: Voices from Some Stakeholders on the Construction of China's Open Scientific Innovation Ecology [J]. Journal of Library and Information Science in Agriculture, 2022, 34(1): 49-61.
[12] LIU Guifeng, RUAN Bingying, LIU Qiong. Enhance Data Security Governance Capability: Interpretation of Data Security Law of the People's Republic of China (Draft) [J]. Journal of Library and Information Science in Agriculture, 2021, 33(4): 4-13.
[13] SUN Tan, HUANG Yongwen, XIAN Guojian, CUI Yunpeng, LIU Juan. Considerations for the Development of Agricultural Informatization Driven by a New Generation of Information Technologies [J]. Journal of Library and Information Science in Agriculture, 2021, 33(3): 4-15.
[14] MENG Yintao, ZHAO Leixia, YU Qianqian. Scientific Data Evaluation Index System for Scientific Data Preservation [J]. Journal of Library and Information Science in Agriculture, 2021, 33(12): 48-59.
[15] YE Xinyou, ZHANG Lulu, KONG Chengguo, ZHANG Qun. Evaluation of Scientific Data Literacy Competency for Postgraduates in China and Construction of Data Literacy Education System [J]. Journal of Library and Information Science in Agriculture, 2021, 33(11): 63-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!