中文    English

Journal of Library and Information Science in Agriculture ›› 2020, Vol. 32 ›› Issue (5): 19-30.doi: 10.13998/j.cnki.issn1002-1248.2020.03.11-0144

;

• Research paper • Previous Articles     Next Articles

Collaborative Effect Measurement of Intelligent Government Information Based on Complex Network

HUANG Shan1, PU Hongyu1, MA Jie1,2   

  1. 1.School of Management , Jilin University, Changchun 130022;
    2.Center for Studies of Information Resources, Jilin University, Changchun 130022
  • Received:2019-10-17 Online:2020-05-05 Published:2020-05-20

Abstract: [Purpose / Significance]In different cities, the governmental service information collaborative architecture is similar but differs in details, this study aims to construct governmental information network, make reasonable choice of utility measure and verify indicators, in order to interpret the present situation and understand problems of e-government information synergy, to facilitate more targeted measures put forward to promote the administrative information synergy. [Method/Process] Combined with the synergies and complex network theory, we design and build measures of synergies effects, interpret the present situation from both network structure and characteristics, make use of typical city governmental fairs information collaborative network to carry out empirical analysis, and test the utility of measures of synergy effects that we have built according to the actual fit validation. [Results/Conclusions] Based on the empirical analysis, it can be proved that the measurement result of synergetic effect is reasonable, and the indicators are feasible and effective. Through further promotion and application, it is conducive to promoting the improvement of the processing efficiency of municipal governmental services, thus facilitating the in-depth carrying out of the reform of "decentralization, administration and service".

Key words: complex network, intelligent government information, information synergy

CLC Number: 

  • D63
[1] 郭雨晖,汤志伟,翟元甫.政策工具视角下智慧城市政策分析:从智慧城市到新型智慧城市[J].情报杂志,2019,38(6):201-207+200.
[2] 于冠一,陈卫东,王倩.电子政务演化模式与智慧政务结构分析[J].中国行政管理,2016(2):22-26.
[3] 国务院办公厅关于印发进一步深化“互联网+政务服务”推进政务服务“一网、一门、一次”改革实施方案的通知[EB/OL].[2020-03-09].http://www.gov.cn/zhengce/content/2018-06/22/content_5300516.htm.
[4] 国务院办公厅关于建立政务服务“好差评”制度提高政务服务水平的意见[EB/OL].[2020-03-09].http://www.gov.cn/zhengce/content/2019-12/17/content_5461829.htm.
[5] 马捷,李璐,耿寒冰,胡漠.智慧居家养老服务三级应急响应信息协同体系构建[J].图书情报工作,2019,63(15):33-43.
[6] 孙长学. 污染防治协同体系的完善[J].改革,2017(8):74-77.
[7] Horner R D.Collaborative networks of health systems and social service agencies: clinical public health in action[J]. Medical Care,2019,57(5):325-326.
[8] 王卫,王晶,张梦君.活动理论视角下政府数据开放模式研究[J].情报理论与实践,2019,42(6):29-35.
[9] 马捷,蒲泓宇,张云开,慎镛乐.基于关联数据的政府智慧服务框架与信息协同机制[J].情报理论与实践,2018,41(11):20-26.
[10] 王敬波,李帅.我国政府信息公开的问题、对策与前瞻[J].行政法学研究,2017(2):77-93.
[11] 曾宇航. 大数据背景下的政府应急管理协同机制构建[J].中国行政管理,2017(10):155-157.
[12] Roa H N, Loza-Aguirre E, Flores P.A survey on the problems affecting the development of open government data Initiatives[C]//Teran L, Meier A, Pincay J, editor, 2019 Sixth International Conference on Edemocracy & Egovernment,2019:157-163.
[13] 赫尔曼·哈肯.大自然成功的奥秘:协同学[M].上海:上海译文出版社,2018:257.
[14] 王太盈.协同效应理论文献综述研究[J].经济研究导刊,2019(31):11+24.
[15] 邹波,周文萱,卜琳华.“三螺旋”创新协同效应理论分析[J].学术交流,2013(11):111-114.
[16] 刘朋. 金融综合化的协同效应理论研究[D].中央财经大学,2015.
[17] Cheng Z.,Ting K.,Ying Zhou Hantao Z.,Lieyun D.Unsupervised spectral clustering for shield tunneling machine monitoring data with complex network theory[J]. Automation in Construction,2019,107.
[18] 李强. 京津冀入境旅游协同发展评价研究[D].河北大学,2019.
[19] 李海波,韩爱华,王怡恒.公共研发与企业研发的双螺旋协同创新效应研究[J].统计与决策,2018,34(15):184-188.
[20] 李斌,韩菁.市场导向、多主体协同与创新扩散:基于复杂网络的动态仿真[J].运筹与管理,2019,28(2):67-73+117.
[21] 汪小帆. 复杂网络理论及其应用[M].北京:清华大学出版社,2006:260.
[22] 马捷,蒲泓宇,张云开.基于复杂网络分析的智慧政务信息协同结构及特征研究——以深圳市为例[J].情报理论与实践,2020,43(1):24-32.
[23] 佘振苏,倪志勇.钱学森复杂系统思想的理论探索与实践[J].党政干部学刊,2011(1):8-13.
[24] 钟丽君,宾晟,袁敏,孙更新.多功能复杂网络模型及其应用[J].复杂系统与复杂性科学,2019,16(2):31-40.
[25] 姜雅文.网络空间用户行为的复杂网络特性研究[J].中国电子科学研究院学报,2017,12(5):452-457+480.
[26] 卢鹏丽,董璊,曹乐.聚类系数指标对复杂网络鲁棒性的影响分析[J].兰州理工大学学报,2019,45(3):101-107.
[27] 马飞. 几类复杂网络模型的拓扑性质:小世界无标度特性,生成树的数目和社区结构[D].西北师范大学,2018.
[28] 李能鹏. 大型复杂网络系统可靠性指标体系构建及度量方法[C].中国造船工程学会电子技术学术委员会.2019年船舶电子自主可控技术发展学术年会论文集,中国江苏南京:《舰船电子工程》编辑部),2019:10-14.
[29] 孙玺菁,司守奎.复杂网络算法与应用[M].北京:国防工业出版社,2015:293.
[30] Freeman L C.A set of measures of centrality based on betweenness[J]. Sociometry,1977,40(1):35-41.
[31] 武澎,王恒山.基于特征向量中心性的社交信息超网络中重要节点的评判[J].情报理论与实践,2014,37(5):107-113.
[32] 姬晓辉,卢小根.科技型小微企业集群知识传播扩散特征研究——基于小世界网络模型[J].科技管理研究,2018,38(8):187-193.
[1] TI Huiying, GENG Qian, JIN Jian. A COPRA Based Algorithm for Subject Division [J]. Journal of Library and Information Science in Agriculture, 2021, 33(1): 41-52.
[2] LIU Ling, WANG Cai. Status Research on the Agricultural Information Synergy in Northwest Area [J]. , 2017, 29(8): 5-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!