中文    English

Journal of library and information science in agriculture

   

Construction of an Artificial Intelligence Literacy Ability Framework and Training System for College Students

HU Anqi   

  1. Suzhou University of Science and Technology Library, Suzhou 215009
  • Received:2025-08-25 Online:2025-11-28

Abstract:

[Purpose/Significance] The rapid proliferation of generative artificial intelligence (AI), exemplified by models like DeepSeek-R1, has precipitated a paradigm shift across various sectors, positioning AI literacy as an indispensable competency for the future workforce. University students, as digital natives and pivotal agents of technological adoption and innovation, stand at the forefront of this transformation. Their proficiency in understanding, utilizing, and critically evaluating AI technologies directly influences their academic performance, research capabilities, and long-term career adaptability. Although existing literature has begun to explore the conceptual landscape of AI literacy, a significant gap remains. There is an absence of a robust, empirically validated competency framework specifically tailored to the unique learning contexts, developmental needs, and future roles of university students within China's higher education system. This study aims to address this critical gap by constructing and validating a comprehensive AI literacy competency framework for college students. Its primary significance lies in its ability to move beyond theoretical discourse and provide an evidence-based model that can guide the systematical development of targeted training programs. This enriches the theoretical underpinnings of AI literacy education and offers practical guidance for cultivating high-quality talent equipped for the intelligent era. [Method/Process] This research employed a mixed-methods approach, integrating qualitative and quantitative methods to provide both theoretical grounding and empirical robustness. The study commenced with a qualitative phase utilizing the grounded theory methodology. A systematic analysis of 112 core academic publications (2019-2024) from databases such as CNKI and Web of Science was conducted. Through a rigorous process of open coding, axial coding, and selective coding, facilitated by NVivo11 software, we extracted 300 initial concepts, which were subsequently synthesized into 26 sub-categories and ultimately 4 main categories. This process resulted in the preliminary construction of a four-dimensional AI literacy competency framework. Following this, a quantitative phase was implemented to test and refine the framework. A detailed questionnaire was developed based on the identified dimensions and indicators. Utilizing a five-point Likert scale, the questionnaire measured 26 variables corresponding to the framework's sub-components. A total of 586 valid responses were collected from undergraduate students across universities in Jiangsu Province, China. The dataset was randomly split into two halves. The first subset (N=293) underwent exploratory factor analysis (EFA) using SPSS to uncover the underlying factor structure and assess the internal consistency reliability via Cronbach's alpha. The second subset (N=293) was subjected to confirmatory factor analysis (CFA) using AMOS to verify the hypothesized factor structure, evaluate model fit indices (e.g., CMIN/DF, CFI, TLI, RMSEA), and establish convergent and discriminant validity by examining average variance extracted (AVE) and composite reliability (CR). [Results/Conclusions] The empirical analyses strongly support the validity and reliability of the proposed competency framework. The EFA clearly identified four distinct factors that aligned perfectly with the predefined dimensions, with a total variance explained of 69.916% and all factor loadings exceeding 0.6. The CFA results demonstrated excellent model fit (CMIN/DF=1.921, CFI=0.950, TLI=0.943, RMSEA=0.056), confirming the structural integrity of the framework. Furthermore, all constructs exhibited high internal consistency (Cronbach's α>0.90) and satisfactory convergent (AVE>0.5, CR>0.7) and discriminant validity. The finalized framework, therefore, comprises four interconnected core dimensions: AI Cognition (encompassing knowledge of basic concepts, applications, value, and risks), AI Skills (covering practical abilities from tool usage and programming to critical evaluation and innovation), AI Ethics (emphasizing social responsibility, privacy, intellectual property, and legal compliance), and AI Thinking (fostering higher-order cognitive abilities like computational, critical, and systemic thinking). Based on this validated framework, the study proposes a systematic and multi-faceted training system. This system outlines clear training objectives, identifies key stakeholders (e.g., university libraries, teaching centers, schools, and external enterprises), designs layered training content and pathways corresponding to each dimension, and suggests implementation strategies focusing on faculty development, a comprehensive assessment and feedback mechanism, and the strategic integration of AI-related resources. The main limitation of this study is that the respondents of the questionnaire were primarily college students during the empirical test stage. Future research can include teachers, business employers, and AI experts to modify and improve the index weight and content of the competency framework from multiple perspectives. This can be done through the Delphi method, expert interviews, and other methods, so as to enhance the framework's authority and universality.

Key words: artificial intelligence literacy, ability framework, training system, grounded theory, factor analysis

CLC Number: 

  • G350

Table 1

Level 3 coding results of AI literacy ability"

选择性编码主轴性编码开放性编码
核心范畴主范畴子范畴重要初始概念及其参考点数
AI素养能力AI认知对AI价值的认知社会价值(5)、个人价值(4)、AI有效性(3)等
对AI风险的认知风险认知(11)、风险防范意识(8)、AI局限性(5)等
对AI工具的认知工具介绍(7)、AI工具(6)、AI工具使用范围(4)等
对AI应用场景的认知教学和管理场景(9)、生活场景(4)、科研场景(4)等
对AI基础知识的认知AI概念(47)、AI影响(29)、AI原理(22)、AI优劣势(12)、AI功能(11)等
AI技能AI使用技能利用AI解决实际问题(26)、人机协同能力(18)、提示能力(9)等
AI编程技能编程技能(11)、算法能力(3)等
AI学习技能终身学习(3)、跨学科学习(3)等
AI分析与评估技能批判性评估(35)、评估生成内容质量(4)、分析能力(4)等
AI创新与创造技能沟通协作(19)、创新应用(12)、创造开发(11)等
AI识别与获取技能AI识别(15)、AI获取(6)等
AI伦理重视社会责任社会责任(13)、负责任使用(10)等
确保国家安全科技安全(4)、政治安全(4)、网络安全(3)、文化安全(3)等
坚持道德原则公平包容(32)、可控可信(32)等
保护隐私安全安全隐私(24)、数据伦理(9)等
尊重知识产权规范引用(8)、学术诚信(3)、版权问题(3)等
注重以人为本以人为本(9)、尊重人权(8)、人文关怀(7)等
遵守法律法规法律法规(7)、知识产权保护制度(5)等
AI思维数据思维数据思维(5)、数据意识(3)等
批判性思维批判性思维(34)、反思思维(7)等
设计思维设计思维(8)、系统设计(3)等
人机协同思维人机协同思维(4)、深度合作(3)等
系统思维系统思维(7)
计算思维计算思维(16)、算法思维(3)等
创新思维创新思维(5)、创造思维(3)等
跨学科思维跨学科思维(6)

Table 2

Connotation of secondary indicators"

一级指标二级指标二级指标内涵
AI认知对AI价值的认知认识到AI产品和应用对于个人工作、学习、生活等方面的个人价值以及对于社会经济、文化、科学、教育等领域的社会价值
对AI风险的认知认识到AI技术给工作、学习、生活带来的潜在风险,例如隐私泄露、虚假内容输出、偏见增强等
对AI 工具的认知认知到AI工具的存在及种类、使用范围、应用领域等
对AI应用场景的认知认识到AI技术能够应用于工作、学习、科研、生活等不同场景,并且知晓不同场景下AI应用的区别
对AI基础知识的认知知晓AI技术的发展历程、技术原理、基本概念、优劣势、功能、社会影响等基础知识
AI技能AI使用技能包括合理运用AI工具和平台解决实际问题的能力;构建提示词指导AI工具生成内容并根据交互情况优化提示词的能力;利用AI工具协助文学、艺术等创造性工作的能力
AI编程技能熟练使用编程语言和程序编辑器形成AI求解任务的程序性方案以解决现实生活问题的能力
AI学习技能适应AI技术的更新迭代,持续自主性学习AI技术及工具的能力
AI分析与评估技能包括分析AI辅助任务的需求和主题,并对生成内容进行准确解读的能力;对AI生成内容的质量进行批判性评估的能力
AI创新与创造技能使用AI工具形成创新作品,并提出创新性见解的能力
AI识别与获取技能包括区分使用和未使用AI的产品的能力;轻松查询、获取和访问AI工具的能力;从众多AI工具中选择最合适的AI工具的能力
AI伦理重视社会责任对AI技术应用保持高度的社会责任感,能够负责任地使用AI工具,并积极参与AI相关政策讨论和AI伦理规则的制定
确保国家安全在利用AI技术和产品解决实际问题的过程中能够自觉保护国家的政治、文化、网络和科技的安全
坚持道德原则在使用AI应用程序或产品时,始终遵循道德规范(如公平、透明等)
保护隐私安全在开发和利用AI的过程中能够确保收集、处理、传输的数据具有安全性,不泄露他人隐私
尊重知识产权能够正确参考和规范引用AI生成的内容
注重以人为本在AI产品开发和应用过程中,坚持以人类为中心的理念,尊重人类基本权益,促进人类社会健康可持续发展
遵守法律法规理解AI相关法律法规,能够合法使用AI工具和产品,同时能够针对不良AI行为,运用法律途径解决问题
AI思维数据思维通过数据分析辅助决策的思维能力
批判性思维批判性地解读AI生成的内容,批判性地思考AI的优势和不足以及对社会的影响的一种思维能力
设计思维从审美创造的角度,提出创新性设计方案的一种思维能力
人机协同思维理解人与AI协作中的角色分工,并能在合作中合理决策的思维能力
系统思维充分认识AI系统各部分的关联性及其与外部环境的相互作用的一种思维能力
计算思维强调分解与模块化、抽象与建模、训练与模拟、优化与迭代的一种思维能力
创新思维优化、整合现有AI工具以创造性和前瞻性的思维方式解决问题的能力
跨学科思维将AI技术与其他学科知识结合,提出跨领域解决方案的一种思维能力

Table 3

KMO measurement test and Bartlett’s test of sphericity results"

KMO值0.874
Bartlett球形度检验近似卡方6 277.793
自由度325
显著性0.000

Table 4

Rotated component matrix"

题项成分1成分2成分3成分4公因子方差
JZ0.8650.816
FX0.8450.770
GJ0.8430.787
JCZS0.8410.763
YYCJ0.8300.773
XXJN0.8900.833
CX0.8420.749
FXPG0.8320.724
SB0.7890.652
SYJN0.7420.609
BCJN0.7160.540
ZSCQ0.8680.790
FLFG0.8610.767
SHZR0.8270.732
DD0.8130.734
GJAQ0.8110.687
YRWB0.7980.672
YSAQ0.7470.574
JSSW0.8750.803
KXKSW0.8410.754
SJSW0.8180.736
CXSW0.7880.667
SJ0.7620.622
PPSW0.7110.650
XTSW0.6910.509
RJXTSW0.6640.464

Table 5

Reliability analysis results"

因子题项修正后的项与总计相关性删除项后的Cronbach's αCronbach's α
AI认知JZ0.8370.9050.927
FX0.8140.911
GJ0.8140.910
YYCJ0.8140.910
JCZS0.7770.918
AI技能SYJN0.6760.8960.904
BCJN0.6190.903
XXJN0.8580.868
FXPG0.7700.882
CX0.7920.879
SB0.7090.891
AI伦理SHZR0.8040.9160.930
GJAQ0.7620.920
DD0.7920.917
YSAQ0.6560.930
ZSCQ0.8400.912
YRWB0.7510.921
FLFG0.8250.914
AI思维SJSW0.7930.8940.913
PPSW0.7010.903
SJ0.6250.909
RJXTSW0.5900.911
XTSW0.6200.909
JSSW0.8490.890
CXSW0.7420.899
KXKSW0.8100.893

Fig.1

Confirmatory factor analysis model diagram"

Table 6

Model adaptation test"

拟合指数CMIN/DFNFIIFITLICFIRMSEA
拟合模型1.9210.9010.9500.9430.9500.056
指标判定标准<3>0.90>0.90>0.90>0.90<0.08

Table 7

Convergence validity and combination reliability testing"

路径关系EstimateS.E.C.R.PAVECR
JCZS<---AI认知0.82

0.618

0.888

YYCJ<---AI认知0.6560.06212.121***
GJ<---AI认知0.8380.0616.935***
FX<---AI认知0.6630.0712.293***
JZ<---AI认知0.9350.05619.382***
SB<---AI技能0.748

0.58

0.891

CX<---AI技能0.8180.08114.176***
FXPG<---AI技能0.8340.0814.488***
XXJN<---AI技能0.8850.08215.395***
BCJN<---AI技能0.6240.07310.568***
SYJN<---AI技能0.6190.07410.473***
FLFG<---AI伦理0.95

0.594

0.909

YRWB<---AI伦理0.7760.03718.925***
ZSCQ<---AI伦理0.9580.02934.183***
YSAQ<---AI伦理0.6760.0514.601***
DD<---AI伦理0.7190.04516.279***
GJAQ<---AI伦理0.6050.05612.303***
SHZR<---AI伦理0.6280.05312.991***
KXKSW<---AI思维0.644

0.617

0.927

CXSW<---AI思维0.710.1110.59***
JSSW<---AI思维0.8740.11812.452***
XTSW<---AI思维0.8510.11712.206***
RJXTSW<---AI思维0.7770.11611.379***
SJ<---AI思维0.7440.10810.985***
PPSW<---AI思维0.8460.10212.135***
SJSW<---AI思维0.8080.10911.71***

Table 8

Differential validity test"

因子AI思维AI伦理AI技能AI认知
AI思维0.617
AI伦理0.180.594
AI技能0.2580.1770.58
AI认知0.4420.180.3660.618
AVE值平方根0.7850.7710.7620.786
[1] 张兴旺, 李洁, 李思凡, 王小培. DeepSeek赋能图书馆知识服务的理论模型、模式创新与重要启示[J]. 农业图书情报学报, 2025, 37(1): 4-16.
ZHANG X W, LI J, LI S F, et al. Theoretical model, model innovation, and important implications of DeepSeek empowering library knowledge services[J]. Journal of library and information science in agriculture, 2025, 37(1): 4-16.
[2] Mckinsey Global Institute. Jobs lost, jobs gained: Workforce transitions in a time of automation[EB/OL]. [2025-03-20]. .
[3] 中国青年报. 超八成受访大学生曾使用AI工具[EB/OL]. [2025-03-20]. .
[4] KONISHI Y. What is needed for AI literacy priorities for the Japanese economy in 2016[EB/OL]. [2025-03-28]. .
[5] LONG D R, MAGERKO B. What is AI literacy Competencies and design considerations[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Honolulu, HI, USA: ACM, 2020: 1-16.
[6] BURGSTEINER H, KANDLHOFER M, STEINBAUER G. Irobot: Teaching the basics of artificial intelligence in high schools[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington, D.C.: Association for the Advancement of Artificial Intelligence, 2016, 30(1): 4126-4127.
[7] CAROLUS A, AUGUSTIN Y, MARKUS A, et al. Digital interaction literacy model - Conceptualizing competencies for literate interactions with voice-based AI systems[J]. Computers and education: Artificial intelligence, 2023, 4: 100114.
[8] NG D T K, LUO W Y, CHAN H M Y, et al. Using digital story writing as a pedagogy to develop AI literacy among primary students[J]. Computers and education: Artificial intelligence, 2022, 3: 100054.
[9] 蔡迎春, 张静蓓, 虞晨琳, 等. 数智时代的人工智能素养: 内涵、框架与实施路径[J]. 中国图书馆学报, 2024, 50(4): 71-84.
CAI Y C, ZHANG J B, YU C L, et al. Artificial intelligence literacy in the age of digital intelligence: Connotation, framework and implementation path[J]. Journal of library science in China, 2024, 50(4): 71-84.
[10] 吴丹, 孙昕玦. 以人为本的人工智能素养教育探究:UNESCO教师和学生人工智能能力框架的解读与启示[J]. 农业图书情报学报, 2024, 36(8): 4-19.
WU D, SUN X J. Exploring Human-centered AI literacy education: Interpretation and insights from UNESCO's AI competency framework for teachers and students[J]. Journal of library and information science in agriculture, 2024, 36(8): 4-19.
[11] 尹开国. 人工智能素养: 提出背景、概念界定与构成要素[J]. 图书与情报, 2024(3): 60-68.
YIN K G. AI literacy: Background, conceptual definition, and constituent elements[J]. Library & information, 2024(3): 60-68.
[12] HEYDER T, POSEGGA O. Extending the foundations of AI literacy[EB/OL]. [2025-03-27]. .
[13] KIM S, JANG Y, KIM W, et al. Why and what to teach: AI curriculum for elementary school[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(17): 15569-15576.
[14] 王树义, 曾雯, 张为师, 等. 知识工作者AI素养差距的AI技术弥补手段研究[J]. 农业图书情报学报, 2024, 36(8): 20-33.
WANG S Y, ZENG W, ZHANG W S, et al. Addressing the knowledge worker AI literacy gap with AI technology[J]. Journal of library and information science in agriculture, 2024, 36(8): 20-33.
[15] 杨鸿武, 张笛, 郭威彤, 等. STEM背景下人工智能素养框架的研究[J]. 电化教育研究, 2022, 43(4): 26-32.
YANG H W, ZHANG D, GUO W T, et al. Research on AI literacy framework in stem context[J]. E-education research, 2022, 43(4): 26-32.
[16] 王奕俊, 王英美, 杨悠然, 等. 高等院校人工智能素养教育的内容体系与发展理路[J]. 黑龙江高教研究, 2022, 40(2): 26-31.
WANG Y J, WANG Y M, YANG Y R, et al. Content system and development philosophy of artificial intelligence literacy education in Colleges and universities[J]. Heilongjiang researches on higher education, 2022, 40(2): 26-31.
[17] 郑勤华, 覃梦媛, 李爽. 人机协同时代智能素养的理论模型研究[J]. 复旦教育论坛, 2021, 19(1): 52-59.
ZHENG Q H, QIN M Y, LI S. Study on the theoretical model of artificial intelligence competency in the era of human-machine collaboration[J]. Fudan education forum, 2021, 19(1): 52-59.
[18] 费小冬. 扎根理论研究方法论: 要素、研究程序和评判标准[J]. 公共行政评论, 2008, 1(3): 23-43, 197.
FEI X D. Grounded theory methodology: Tenets, procedures and criteria for evaluation[J]. Journal of public administration, 2008, 1(3): 23-43, 197.
[19] ANDERSON J C, GERBING D W. Structural equation modeling in practice: A review and recommended two-step approach[J]. Psychological bulletin, 1988, 103(3): 411-423.
[20] 张帅, 马费成. 大学生健康信息规避量表构建研究[J]. 图书情报工作, 2020, 64(9): 3-9.
ZHANG S, MA F C. Study on the construction of college students' health information avoidance evaluation scale[J]. Library and information service, 2020, 64(9): 3-9.
[21] YOO B, DONTHU N. Developing and validating a multidimensional consumer-based brand equity scale[J]. Journal of business research, 2001, 52(1): 1-14.
[22] 宋小康, 赵宇翔, 张轩慧, 等. 移动社交媒体环境下用户错失焦虑症(FoMO)量表构建研究[J]. 图书情报工作, 2017, 61(11): 96-105.
SONG X K, ZHAO Y X, ZHANG X H, et al. Research on the construction of user loss anxiety disorder (fomo) scale in the mobile social media environment[J]. Library and information service, 2017, 61(11): 96-105.
[23] IACOBUCCI D. Structural equations modeling: Fit Indices, sample size, and advanced topics[J]. Journal of consumer psychology, 2010, 20(1): 90-98.
[24] HU L T, BENTLER P M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification[J]. Psychological methods, 1998, 3(4): 424-453.
[25] WANG B C, RAU P P, YUAN T Y. Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale[J]. Behaviour & information technology, 2023, 42(9): 1324-1337.
[26] GHAZALI N, NORDIN M S. Measuring meaningful learning experience: Confirmatory factor analysis[J]. International journal of innovation, creativity and change, 2019, 9(12): 283-296.
[27] 杨峰, 朱梨, 胡琳. 构建人工智能素养教育的融合模式: 国外高校图书馆的响应启示[J/OL]. 图书馆论坛, 2025: 1-10. .
YANG F, ZHU L, HU L. Constructing the integration mode of artificial intelligence literacy education: The response enlightenment of foreign university libraries[J/OL]. Library forum, 2025: 1-10. .
[28] 李白杨, 孙榕. 基于“知识-技能”导航的人工智能素养通识教育课程构建[J]. 农业图书情报学报, 2024, 36(8): 34-42.
LI B Y, SUN R. Construction of an AI literacy general education curriculum based on "Knowledge-Skills" navigation[J]. Journal of library and information science in agriculture, 2024, 36(8): 34-42.
[29] 刘亚丽. 高校图书馆人工智能素养培育发展策略——基于对42家“双一流”大学图书馆的调查[J/OL].图书馆工作与研究, 2025: 1-11. .
LIU Y L. Strategies for the cultivation and development of artificial intelligence literacy in university libraries - Based on the survey of 42 "double first class" university libraries[J/OL]. Library work and research, 2025: 1-11. .
[30] Hong Kong Baptist University. Getting started with generative AI: List of AI tools[EB/OL]. [2025-04-09]. .
[31] 华中科技大学图书馆. 爱(AI)上图书馆! AI专区上新![EB/OL]. [2025-04-09]. .
[32] 张银荣, 杨刚, 徐佳艳, 等. 人工智能素养模型构建及其实施路径[J]. 现代教育技术, 2022, 32(3): 42-50.
ZHANG Y R, YANG G, XU J Y, et al. Construction of artificial intelligence literacy model and its implementation path[J]. Modern educational technology, 2022, 32(3): 42-50.
[33] 夏晶. 美国高校图书馆人工智能实验室实践与启示: 以美国罗德岛大学图书馆为例[J]. 图书馆工作与研究, 2020(3): 68-73.
XIA J. Practice and enlightenment of artificial intelligence laboratory in American University libraries: A case study of the university of Rhode island library[J]. Library work and study, 2020(3): 68-73.
[34] Imperial College London Library. Generative AI guidance[EB/OL]. [2025-04-05]. .
[35] Group Russell. Russell group principles on the use of generative AI tools in education[EB/OL]. [2025-04-24]. .
[36] 图书信息中心. 上海科技大学生成式人工智能使用指南[EB/OL]. [2025-04-10]. .
[37] 刘松梅. 高校图书馆AI素养教育实践策略研究[J]. 山西档案, 2024(8): 175-177.
LIU S M. Research on the practice strategy of AI literacy education in university library[J]. Shanxi archives, 2024(8): 175-177.
[38] University of Sydney. AI in education[EB/OL]. [2025-04-11]. .
[39] 李艳, 孙凌云, 江全元, 等. 高校教师人工智能素养及提升策略[J]. 开放教育研究, 2025, 31(1): 23-33.
LI Y, SUN L Y, JIANG Q Y, et al. College teachers' AI literacy and improvement strategies[J]. Education research, 2025, 31(1): 23-33.
[40] 孙立会, 周亮. 生成式人工智能素养: 概念演变、框架构建与提升路径[J]. 现代远距离教育, 2025(1): 11-21.
SUN L H, ZHOU L. Generative artificial intelligence literacy: Conceptual evolution, framework construction and enhancement paths[J]. Modern distance education, 2025(1): 11-21.
[41] University of South Florida Libraries. AI tools and resources[EB/OL]. [2025-04-12]. .
[42] 上海交通大学. 包玉刚图书馆新技术体验区开放[EB/OL]. [2025-04-12]. .
[1] Yuhong CUI, Jintao ZHAO. AIGC Using Behavior Analysis from the Perspective of Artificial Intelligence Literacy [J]. Journal of library and information science in agriculture, 2024, 36(11): 20-32.
[2] Jia XU. The Optimization Path of VR Red Resource Reading Style under the Embodied Cognition: An Exploratory Study Based on Grounded Theory [J]. Journal of library and information science in agriculture, 2024, 36(11): 33-46.
[3] ZHANG Hongping. Promotion Mechanism of User Demand to Library Literature Resource Construction, Management and Service: Based on Grounded Theory [J]. Journal of library and information science in agriculture, 2022, 34(9): 95-103.
[4] GUO Weijia. Influencing Factors of Artificial Intelligence Readiness in Libraries [J]. Journal of library and information science in agriculture, 2022, 34(5): 47-56.
[5] LYU Kun, CHEN Yaoyao, XIANG Minhao. Influencing Factors of Sina Weibo Information Service Quality from the Perspective of Users: Exploratory Analysis Based on Grounded Theory [J]. Journal of library and information science in agriculture, 2022, 34(10): 70-81.
[6] CHEN Tao, SHAN Rongrong, LI Hui. Semantic Annotation of Image Resources in Digital Humanities [J]. Journal of library and information science in agriculture, 2020, 32(9): 6-14.
[7] LI Chao, LIU Zijie, LIU Ahui, ZHU Xuekun, FAN Zhenjia. The Modeling of the Formation Mechanism of Consumer Intention in Short Video Marketing [J]. Journal of library and information science in agriculture, 2020, 32(10): 35-46.
[8] ZHANG Wenliang, FEI Kefan, MA Yi. Grounded Theory Research on the Psychological Influence Factors of Digital Youth Internet Reading [J]. Journal of library and information science in agriculture, 2019, 31(12): 23-31.
[9] Li Shuping. Research on the Influence Factors of Performance of the Start-up Enterprises in College Makerspace Based on Grounded Theory [J]. Journal of library and information science in agriculture, 2018, 30(8): 78-81.
[10] TONG Jinhong. Research on Information Service Quality Evaluation of University Library Based on Fuzzy Comprehensive Evaluation Method [J]. Journal of library and information science in agriculture, 2018, 30(2): 172-175.
[11] LIU Jiamei, CHENG Jiejing. Research on the Hotspots of Digital Library under the Big Data by Applying Factor Dimension Reduction Analysis Based on Keywords [J]. Journal of library and information science in agriculture, 2017, 29(4): 76-80.
[12] SHI Hongqing, ZHANG Junying. Hotspot and Tendency of Forestry Science Research in China in Recent Years——Co-word Analysis Based on Keywords of Scientia Silvae Sinicae from 2005 to 2015 [J]. Journal of library and information science in agriculture, 2017, 29(2): 94-102.
[13] HUANG Xiujie, CHU Xialing, ZOU Yiguang, YANG Xianzhi. Characteristic Factor Analysis of High Cited Papers Published in cientia Agricultura Sinica” [J]. Journal of library and information science in agriculture, 2017, 29(11): 145-148.
[14] ZHENG Li-xia. Application of Factor Analysis in the Comprehensive Evaluation of SCI Journals [J]. Journal of library and information science in agriculture, 2016, 28(7): 53-56.
[15] LIU Tao. Evaluation Model for Public Library Efficiency Based on Factor Analysis Rating Method [J]. Journal of library and information science in agriculture, 2016, 28(3): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!