
生成式AI赋能数字图书馆信息素养教育:路径探索、挑战分析与应对策略
沈洪杰(1979- ),女,硕士,副研究馆员,研究方向为情报分析、信息素养教育 |
沈洪伟(1976- ),汉,硕士,馆员,研究方向为图书与档案管理、文档信息化、科技管理 |
王均莉(1989- ),女,硕士,馆员,研究方向为图书馆数智慧化转型与服务创新 |
收稿日期: 2025-04-28
网络出版日期: 2025-09-03
基金资助
吉林大学教师教学发展研究项目“吉林大学教师信息素养调查与能力提升策略研究”(419080801026)
Generative AI Empowering Information Literacy Education in Digital Libraries: Path Exploration, Challenge Analysis, and Response Strategies
Received date: 2025-04-28
Online published: 2025-09-03
【目的/意义】 传统信息素养教育面临标准化、互动性不足、效率低等诸多挑战,本研究旨在探索生成式AI技术如何赋能数字图书馆信息素养教育。 【方法/过程】 采用文献研究、理论分析和概念模型设计的方法,设计具体的应用路径与场景,深入分析引入GenAI可能带来的关键挑战,提出相应的应对策略及对图书馆员角色的启示。 【结果/结论】 GenAI赋能信息素养教育的关键路径包括个性化辅导、模拟训练、内容辅助生成等;主要挑战有内容准确性、过度依赖风险、伦理问题等;需要采取人机协同、批判性AI素养培养、伦理规范建设等审慎策略来应对。研究为数字图书馆利用GenAI改进信息素养教育提供了理论参考和实践路径建议,有助于推动信息素养教育的创新与发展。
沈洪杰 , 沈洪伟 , 王均莉 . 生成式AI赋能数字图书馆信息素养教育:路径探索、挑战分析与应对策略[J]. 农业图书情报学报, 2025 : 1 -11 . DOI: 10.13998/j.cnki.issn1002-1248.25-0231
[Purpose/Significance] In the digital era, information literacy has evolved from an academic skill into a fundamental competency that is essential for civic participation and lifelong learning. Traditional information literacy education in digital libraries is faced with significant challenges including the need for standardized content delivery, limited interactivity, high development costs, and insufficient user engagement. The rapid advancement of generative artificial intelligence (GenAI) technologies presents an unprecedented opportunity to transform information literacy education by leveraging powerful capabilities in natural language processing, personalized interaction, and content generation. This study represents a pioneering systematic exploration of how GenAI can be strategically integrated into digital library information literacy education, It addresses a critical gap in existing research, which primarily focuses on general educational applications rather than library-specific contexts. The research strengthens the theoretical basis of AI-enhanced library education and offers practical advice to institutions adopting innovative educational technologies while upholding quality and ethical standards. [Method/Process] This study employs a comprehensive mixed-method approach combining systematic literature review, theoretical analysis, and conceptual framework development. The methodology is grounded in well-established information literacy frameworks, particularly the ACRL Framework, which provides a foundation for breaking down information literacy education into five key components: information need identification, retrieval strategy development, resource evaluation, information management, and ethics education. A four-dimensional challenge analysis framework was constructed encompassing content quality and credibility, pedagogical methods and learning outcomes, ethics and social equity, and operational considerations. The research synthesizes evidence from emerging AI-enhanced education practices, preliminary library applications, and educational technology literature to develop comprehensive application pathways and strategic responses. [Results/Conclusions] The research identifies specific GenAI integration pathways across the complete information literacy process. Applications include intelligent dialogue guidance for need identification, simulated training environments for retrieval skills, controlled assessment materials for evaluation practice, and interactive ethical scenario simulations. Four primary challenge categories are revealed: content quality issues including AI hallucination and embedded biases; pedagogical challenges such as over-dependence risks and assessment complexity; ethical concerns encompassing data privacy and algorithmic discrimination; and operational challenges including implementation costs and staff capability requirements. Strategic responses include human-AI collaborative review mechanisms, process-oriented task design emphasizing critical thinking, transparent ethical governance frameworks, and comprehensive staff development initiatives. The study emphasizes librarian role transformation toward learning facilitators, AI literacy educators, and ethics advocates. Despite contributions, limitations include reliance on theoretical analysis rather than empirical validation and insufficient attention to user group heterogeneity. To ensure equitable and effective AI-enhanced information literacy education, future research should prioritize empirical outcome studies, case studies of pioneering implementations, and development of library-specific AI tools.
[1] |
Framework for information literacy for higher education | association of college and research libraries[EB/OL]. [2025-04-20].
|
[2] |
李龙飞, 张国良. 算法时代“信息茧房”效应生成机理与治理路径: 基于信息生态理论视角[J]. 电子政务, 2022(9): 51-62.
|
[3] |
易凯谕, 韩锡斌. 从混合教学到人智协同教学: 生成式人工智能技术变革下的教学新形态[J]. 中国远程教育, 2025(4): 85-98.
|
[4] |
|
[5] |
兰国帅, 黄春雨, 杜水莲, 等. 数字化转型助推欧盟公民终身学习能力框架: 要素、实践与思考[J]. 开放教育研究, 2023, 29(3): 47-58.
|
[6] |
孙艺铭, 李童童, 段棣飞. 老年人数字健康素养评估工具范围综述[J]. 医学信息学杂志, 2024, 45(11): 15-21.
|
[7] |
袁淑艳. 高校图书馆嵌入式信息素养教育模式研究: 以大庆师范学院为例[J]. 农业图书情报学刊, 2016, 28(7): 120-123.
|
[8] |
韩丽风, 王媛, 曾晓牧, 等. 面向高质量本科人才培养的信息素养教育创新探索: 以清华大学图书馆实践为例[J]. 大学图书馆学报, 2023, 41(5): 62-68.
|
[9] |
张甜. 图书馆信息检索中人工智能技术的应用分析[J]. 信息记录材料, 2024, 25(11): 243-245.
|
[10] |
卢宇, 余京蕾, 陈鹏鹤, 等. 生成式人工智能的教育应用与展望: 以ChatGPT系统为例[J]. 中国远程教育, 2023(4): 24-31, 51.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
/
〈 |
|
〉 |