农业图书情报学报 ›› 2020, Vol. 32 ›› Issue (2): 47-57.doi: 10.13998/j.cnki.issn1002-1248.2019.12.16-1097

• 研究论文 • 上一篇    下一篇

基于t-SNE算法的双一流大学基金立项关键词降维的可视化建模研究

曹祺   

  1. 珠海市横琴新区灰觋信息科学研究院,珠海 519030
  • 收稿日期:2019-12-16 出版日期:2020-02-05 发布日期:2020-02-25
  • 作者简介:曹祺(1988-),男,ORCID:0000-0001-6337-345,武汉大学管理学博士,中国科学技术信息研究所情报学博士后,副研究馆员,高级工程师,研究方向:情报科学。

Visual Modeling of Keyword Dimension Reduction in Double First-Class University Funds Based on t-SNE Algorithm

CAO Qi   

  1. Greysh Academy of Information Sciences, Hengqin New Area, Zhuhai City, Zhuhai 519030
  • Received:2019-12-16 Online:2020-02-05 Published:2020-02-25

摘要: [目的/意义]国家自然科学基金的立项资助是科研能力的重要体现,分析双一流大学的科研基金的立项数据有助于为大学建设提供战略支持。[方法/过程]研究国家自然科学基金委员会在1998年—2017年资助项目的关键词数据,先对双一流大学进行预处理,然后利用MATLAB中t-SNE算法对结果进行数据降维和可视化。从时间维度和依托单位维度进行建模,研究过去20年内,双一流大学项目的关键词分布。[结果/结论]方法比传统基于结构化分析的方法更直观,为大学建设战略制定的提供参考。另外,相关学者也可以在笔者研究基础上,进一步建模和编程,尝试例如进行交互式的可视化建模,对海量项目数据进行快速定位,以提高科研效率。

关键词: 科研基金, 数据挖掘, 科技情报分析, 网络可视化, t-SNE

Abstract: [Purpose/Significance] The National Natural Science Foundation's project funding is an important indicator of scientific research capabilities. Analysis of the data of the establishment of the research funds of double first-class universities is helpful to provide strategic support for university construction. [Purpose/Significance] This article studies the keyword data of the National Natural Science Foundation of China from 1998 to 2017. At first we preprocess double first-class universities' data, and then use the t-SNE algorithm in MATLAB to reduce the dimension of the data and visualize the results. This paper models from the time dimension and the unit-dependent dimension, and studies the keyword distribution of double first-class universities' projects in the past 20 years. [Results/Conclusions] The method in this paper is more intuitive than the traditional method based on structured analysis and provides a reference for the formulation of Chinese universities' construction strategies. In addition, other scholars can further model and program based on this research for such purposes as interactive visual modeling and fast and positioning of massive project data to improve scientific research efficiency.

Key words: research fund, data mining, scientific and technological intelligence analysis, network visualization, t-SNE

中图分类号: 

  • G350

引用本文

曹祺. 基于t-SNE算法的双一流大学基金立项关键词降维的可视化建模研究[J]. 农业图书情报学报, 2020, 32(2): 47-57.

CAO Qi. Visual Modeling of Keyword Dimension Reduction in Double First-Class University Funds Based on t-SNE Algorithm[J]. Journal of Library and Information Science in Agriculture, 2020, 32(2): 47-57.