Journal of Library and Information Science in Agriculture ›› 2023, Vol. 35 ›› Issue (10): 4-33.doi: 10.13998/jcnki.issn1002-1248.23-0850
SUN Tan1,2*, ZHANG Zhixiong3,4,5*, ZHOU Lihong6*, WANG Dongbo7*, ZHANG Hai8*, LI Baiyang9*, YONG Suhua10*, ZUO Wangmeng11*, YANG Guanglei11*
CLC Number:
[1] RADFORD A, WU J, CHILD R, et al.Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8): 9. [2] ROMBACH R, BLATTMANN A, LORENZ D, et al.High-resolution image synthesis with latent diffusion models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey: IEEE, 2022: 10674-10685. [3] KRYSTAL H.ChatGPT sets record for fastest-growing user base[EB/OL].[2023-02-02].https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/. [4] 国家互联网信息办公室, 中华人民共和国国家发展和改革委员会, 中华人民共和国教育部, 等. 生成式人工智能服务管理暂行办法[EB/OL]. [2023-02-02]. https://www.gov.cn/zhengce/zhengceku/202307/content_6891752.htm. [5] WANG H C, FU T F, DU Y Q, et al.Scientific discovery in the age of artificial in-telligence[J]. Nature, 2023, 620: 47-60. [6] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. New York: ACM, 2014: 2672-2680. [7] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. 2013: arXiv: 1312.6114. http://arxiv.org/abs/1312.6114.pdf. [8] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. 2018: arXiv: 1810.04805. http://arxiv.org/abs/1810.04805.pdf. [9] JUMPER J, EVANS R, PRITZEL A, et al.Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596: 583-589. [10] HE K M, CHEN X L, XIE S N, et al.Masked autoencoders are scalable vision learners[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey: IEEE, 2022: 15979-15988. [11] HO J, JAIN A, ABBEEL P.Denoising diffusion probabilistic mod-els[C]//Proceedings of the 34th International Conference on Neural Information Pro-cessing Systems. New York: ACM, 2020: 6840-6851. [12] SENIOR A W, EVANS R, JUMPER J, et al.Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710. [13] JI Y R, ZHOU Z H, LIU H, et al.DNABERT: Pre-trained bidirectional encoder representations from transformers model for DNA-language in genome[J]. Bioinfor-matics, 2021, 37(15): 2112-2120. [14] WANG Y Y, WANG J R, CAO Z L, et al.Molecular contrastive learning of repre-sentations via graph neural networks[J]. Nature machine intelligence, 2022, 4: 279-287. [15] ESTEVA A, ROBICQUET A, RAMSUNDAR B, et al.A guide to deep learning in healthcare[J]. Nature medicine, 2019, 25(1): 24-29. [16] ZHOU Y K, CHIA M A, WAGNER S K, et al.A foundation model for generalizable disease detection from retinal images[J]. Nature, 2023, 622: 156-163. [17] PATHAK J, SUBRAMANIAN S, HARRINGTON P, et al. Four-CastNet: A global data-driven high-resolution weather model using adaptive fourier neural opera-tors[EB/OL]. 2022: arXiv: 2202.11214. http://arxiv.org/abs/2202.11214.pdf. [18] BI K F, XIE L X, ZHANG H H, et al.Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619: 533-538. [19] REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al.Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566: 195-204. [20] LI Y Z, WANG H L, YUAN S H, et al. Myriad: Large multimodal model by applying vision experts for industrial anomaly detection[EB/OL]. 2023: arXiv: 2310.19070. http://arxiv.org/abs/2310.19070.pdf. [21] SCHICK T, DWIVEDI-YU J, DESSì R, et al. Toolformer: Language models can teach themselves to use tools[EB/OL]. 2023: arXiv: 2302.04761. http://arxiv.org/abs/2302.04761.pdf [22] BROHAN A, BROWN N, CARBAJAL J, et al. RT-2: Vision-language-action models transfer web knowledge to robotic control[EB/OL]. 2023: arXiv: 2307.15818. http://arxiv.org/abs/2307.15818.pdf [23] DRIESS D, XIA F, SAJJADI M S M, et al. PaLM-E: An embodied multimodal language model[EB/OL]. 2023: arXiv: 2303.03378. http://arxiv.org/abs/2303.03378.pdf [24] MOOR M, BANERJEE O, ABAD Z S H, et al. Foundation models for generalist medical artificial intelligence[J]. Nature, 2023, 616: 259-265. |
[1] | ZHANG Xingwang, DUAN Xuechun, XIN Jie. A Study on the Knowledge-Based Description Framework and Application Scenarios of Ancient Chinese Map Documents in the Digital Intelligence Era [J]. Journal of Library and Information Science in Agriculture, 2023, 35(9): 4-11. |
[2] | LI Tian, ZHAO Ruixue, XIAN Guojian, KOU Yuantao. Agricultural Intelligent Knowledge Services to Enable Rural Revitalization: Internal Mechanism and Dilemma Relief [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 43-54. |
[3] | ZHAO Ruixue, HUANG Yongwen, MA Weilu, DONG Wenjia, XIAN Guojian, SUN Tan. Insights and Reflections of the Impact of ChatGPT on Intelligent Knowledge Services in Libraries [J]. Journal of Library and Information Science in Agriculture, 2023, 35(1): 29-38. |
[4] | LI Jie, WEI Ruibi. VOSviewer Application Status and Its Knowledge Base [J]. Journal of Library and Information Science in Agriculture, 2022, 34(6): 61-71. |
[5] | ZHANG Zhixiong, LIU Huan, YU Gaihong. Building an Artificial Intelligence Engine Based on Scientific and Technological Literature Knowledge [J]. Journal of Library and Information Science in Agriculture, 2021, 33(1): 17-31. |
[6] | WANG Haiyan, ZHOU Luyi, YANG Li, ZHU Qijun, JIA Guojie, LU Chengyu. Discussion on the Teaching Resources of Pharmaceutical Science Based on Medical Knowledge Base [J]. , 2018, 30(4): 136-138. |
[7] | HUANG Zhao. Research on the Construction and Sharing of Characteristic Art Collection Resource for Social Service [J]. , 2017, 29(9): 21-24. |
[8] | LI Ying. Discussion on the Construction of Knowledge base for Scientific Research in University Libraries [J]. , 2014, 26(2): 39-41. |
|