Journal of Library and Information Science in Agriculture ›› 2023, Vol. 35 ›› Issue (6): 72-82.doi: 10.13998/j.cnki.issn1002-1248.23-0419
Previous Articles Next Articles
CHEN Yuanyuan1, WANG Lei2
CLC Number:
[1] 李金鹏, 张闯, 陈小军, 等. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21. LI J P, ZHANG C, CHEN X J, et al.Survey on automatic text sum-marization[J]. Journal of computer research and development, 2021, 58(1): 1-21. [2] LIU C Y, CHEN M S, TSENG C Y.IncreSTS: Towards real-time incremental short text summarization on comment streams from social network services[J]. IEEE transactions on knowledge and data engineering, 2015, 27(11): 2986-3000. [3] MARUJO L, LING W, RIBEIRO R, et al.Exploring events and distributed representations of text in multi-document summarization[J]. Knowledge-based systems, 2016, 94: 33-42. [4] CODINA-FILBà J, BOUAYAD-AGHA N, BURGA A, et al.Using genre-specific features for patent summaries[J]. Information processing & management, 2017, 53(1): 151-174. [5] LóPEZ CONDORI R E, SALGUEIRO PARDO T A. Opinion summarization methods: Comparing and extending extractive and abstractive approaches[J]. Expert systems with applications, 2017, 78: 124-134. [6] MISHRA R, BIAN J T, FISZMAN M, et al.Text summarization in the biomedical domain: A systematic review of recent research[J]. Journal of biomedical informatics, 2014, 52: 457-467. [7] 黄晓斌, 张明鑫. 新技术环境下的智库情报服务创新研究[J]. 图书与情报, 2020(1): 112-119. HUANG X B, ZHANG M X.Innovations of think tank information services in new technological environment[J]. Library & information, 2020(1): 112-119. [8] 李程. 基于人工智能技术的新型出版智库建设浅析[J]. 出版广角, 2020(4): 6-10. LI C.Analysis on the construction of new publishing think tank based on artificial intelligence technology[J]. View on publishing, 2020(4): 6-10. [9] KUPIEC J, PEDERSEN J, CHEN F.A trainable document summarizer[C]//Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1995: 68-73. [10] NALLAPATI R, ZHAI F F, ZHOU B W.SummaRuNNer: A recurrent neural network based sequence model for extractive summarization of documents[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. New York: ACM, 2017: 3075-3081. [11] ZHOU Q Y, YANG N, WEI F R, et al.Neural document summarization by jointly learning to score and select sentences[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2018, 1:654-663. [12] 王红斌, 金子铃, 毛存礼. 结合层级注意力的抽取式新闻文本自动摘要[J]. 计算机科学与探索, 2022, 16(4): 877-887. WANG H B, JIN Z L, MAO C L.Extractive news text automatic summarization combined with hierarchical attention[J]. Journal of frontiers of computer science and technology, 2022, 16(4): 877-887. [13] SUTSKEVER I, VINYALS O, LE Q V.Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. New York: ACM, 2014: 3104-3112. [14] K, MARASEK K.Neural-based machine translation for medical text domain based on European medicines agency leaflet texts[J]. Procedia computer science, 2015, 64: 2-9. [15] YAO Z J, CHEN A X, XIE H.Chinese long text summarization using improved sequence-to-sequence lstm[J]. Journal of physics: Conference series, 2020, 1550(3): 032162. [16] JUNG C, YOON W C, DATTA R, et al.Knowledge base driven automatic text summarization using multi-objective optimization[J]. International journal of advanced computer science and applications, 2021, 12(8): 836-849. [17] SUMALATHA B, BULUSU V V.BERT tokenization and hybrid-op-timized deep recurrent neural network for Hindi document summa-rization[J]. International journal of fuzzy system applications, 2022, 11(1): 1-28. [18] SHEHAB A, AHMED R.Performance study on extractive text summarization using BERT models[J]. Information, 2022, 13(2): 67-71. [19] ZHANG J Q, ZHAO Y, SALEH M, et al.PEGASUS: Pre-training with extracted gap-sentences for abstractive summarization[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 11328-11339. [20] TSVIGUN A, LYSENKO I, SEDASHOV D, et al. Active learning for abstractive text summarization[EB/OL]. arXiv:2301.03252, 2023. https://arxiv.org/abs/2301.03252. [21] HU B T, CHEN Q C, ZHU F Z. LCSTS: A large scale Chinese short text summarization dataset[EB/OL]. arXiv:1506.05865, 2015. https://arxiv.org/abs/1506.05865. [22] MIHALCEA R, TARAU P.Textrank: Bringing order into text[C]//Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 2004: 404-411. [23] 宁珊, 严馨, 徐广义, 等. 融合关键词的中文新闻文本摘要生成[J]. 计算机工程与科学, 2020, 42(12): 2265-2272. NING S, YAN X, XU G Y, et al.Chinese news text abstractive summarization with keywords fusion[J]. Computer engineering & science, 2020, 42(12): 2265-2272. [24] ZHU Y Q, ZHAO P, MU X D, et al.Chinese text summarization generation algorithm based on ERNIE-GEN with few-shot learning[J]. Journal of physics: Conference series, 2021, 1961(1): 012051. [25] ROUGE L C Y. A package for automatic evaluation of summaries[C]//Proceedings of Workshop on Text Summarization of ACL, Spain, 2004. [26] 祝超群, 彭艳兵. 基于集成学习的文本摘要抽取方法研究[J]. 计算机与数字工程, 2022, 50(7): 1540-1544, 1592. ZHU C Q, PENG Y B.Research of text summarization extractive method based on ensemble learning[J]. Computer & digital engi-neering, 2022, 50(7): 1540-1544, 1592. [27] SEE A, LIU P J, MANNING C D.Get to the point: Summarization with pointer-generator networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2017: 1073-1083. [28] XI X F, PI Z, ZHOU G D.Global encoding for long Chinese text summarization[J]. ACM transactions on Asian and low-resource language information processing, 19(6): 1-17. [29] 高巍, 马辉, 李大舟, 等. 基于双编码器的中文文本摘要技术的研究与实现[J]. 计算机工程与设计, 2021, 42(9): 2687-2695. GAO W, MA H, LI D Z, et al.Research and implementation of Chinese text abstract technology based on double encoder[J]. Computer engineering and design, 2021, 42(9): 2687-2695. [30] LIU Z, LIN W, SHI Y, et al.A robustly optimized BERT pre-train-ing approach with post-training[C]//China national conference on Chinese computational linguistics. Cham: Springer, 2021: 471-484. |
No related articles found! |
|