Journal of Library and Information Science in Agriculture ›› 2023, Vol. 35 ›› Issue (1): 87-98.doi: 10.13998/j.cnki.issn1002-1248.22-0662
Previous Articles Next Articles
XU Shuo1, ZHANG Mengmeng2, LIU Liyuan2, WANG Congcong1, SUN Rui2, LI Yilin2, XU Jinnan2, AN Xin2,*
CLC Number:
[1] MEI-HSIU-CHING H, LIU JOHN-S. The swift knowledge development path of COVID-19 research: The first 150 days[J]. Scientometrics, 2021, 126(3): 2391-2399. [2] LUCY L, LO K, CHANDRASEKHAR Y, et al.CORD-19: The covid-19 open research dataset[J]. ArXiv: 2004.10706v4, 2020. [3] CHEN Q, ALLOT A, LU Z.LitCovid: An open database of COVID-19 literature[J]. Nucleic acids res, 2021, 49(d1): D1534-D1540. [4] XU B, GUTIERREZ B, MEKARU S, et al.Epidemiological data from the covid-19 outbreak, real-time case information[J]. Scientific data, 2021, 7(1): 1-6. [5] DONG E, DU H, GARDNER L.An interactive web-based dashboard to track covid-19 in realtime[J]. The lancet infectious diseases, 2020, 20(5): 533-534. [6] KABIR M, MADRIA S.Coronavis: A real-time covid-19 tweets analyzer[J]. ArXiv: 2004.10706v4, 2020. [7] 杨崇洛, 生龙, 魏忠诚, 等. 新冠文本实体关系抽取及数据集构建方法研究[J/OL]. 计算机工程与应用: 1-9[2023-02-06]. http://kns.cnki.net/kcms/detail/11.2127.tp.20220622.1100.010.html. YANG C L, SHENG L, WEI Z C, et al. Research on COVID-19 text entity relation extraction and dataset construction methods[J/OL]. Computer engineering and applications: 1-9[2023-02-06]. http://kns.cnki.net/kcms/detail/11.2127.tp.20220622.1100.010.html. [8] DOMINGO-FERNáNDEZ D, BAKSI S, SCHULTZ B, et al. Covid-19 knowledge graph: A computable, multi-modal, cause-and-effect knowledge model of covid-19 pathophysiology[J]. Bioinformatics, 2021, 37(9): 1332-1334. [9] ZHANG R, HRISTOVSKI D, SCHUTTE D, et al.Drug repurposing for COVID-19 via knowledge graph completion[J]. Journal of biomedical informatics, 2021, 115: 103696. [10] GROSSMAN M, CORMACK G, ROEGIEST A.TREC 2016 total recall track overview[C]. Proceedings of the twenty-fifth text retrieval conference, 2016: 15-18. [11] COUNSELL C.Formulating questions and locating primary studies for inclusion in systematic reviews[J]. Annals of internal medicine, 1997, 127(5): 380-387. [12] CARVALLO A, PARRA D, LOBEL H, et al.Automatic document screening of medical literature using word and text embeddings in an active learning setting[J]. Scientometrics, 2020, 125(3): 3047-3084. [13] HASSLER E, HALE D, HALE J.A comparison of automated training-by-example selection algorithms for evidence based software engineering[J]. Information and software technology, 2018(98): 59-73. [14] CORMACK G, GROSSMAN M.Evaluation of Machine-Learning protocols for technology -Assisted review in electronic discovery[C]. Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval, 2014: 153-162. [15] ROEGIEST A, CORMACK G, GROSSMAN M, et al. TREC2015 to-tal recall track overview[C]. Proceedings of the 24th text REtrieval-conference(TREC 2015), 2015. [16] KANOULAS E, LI D, AZZOPARDI L, et al.CLEF 2018 technolog-ically assisted reviews in empirical medicine overview[C]. CEUR workshop proceedings, 2018: 10-14. [17] DONOSO-GUZMáN I, PARRA D. An interactive relevance feedback interface for evidence-based health care[C]. The 23rd international conference on intelligent user interfaces, 2014: 103-114. [18] WENG L, LI Z, CAI R, et al.Query by document via a decomposition-based two-level retrieval approach[C]. Proceedings of the 34th international ACM SIGIR conference on research and development in information retrieval, 2011: 505-514. [19] LEE G, SUN A.Seed-driven document ranking for systematic reviews in evidence-based medicine[C]. The 41st international ACM SIGIR conference on research & development in information retrieval, 2018: 455-464. [20] XU S.Bayesian na ve bayes classifiers to text classification[J]. Jour-nal of information science, 2018, 44(1): 48-59. [21] XU S, AN X, QIAO X, et al.Multi-task least-squares support vector machines[J]. Multimedia tools and applications, 2014, 71(2): 699-715. [22] AN X, SUN X, XU S, et al.Important citations identification by exploiting generative model into discriminative model[J]. Journal of information science, 2023, 49(1): 107-121. [23] SETTLES B.Active learning literature survey[R]. University of Wisconsin-Madison, Madison, USA: Computer sciences technical report 1648, 2010. [24] 沙九, 冯冲, 周鹭琴, 等. 面向司法领域的高质量开源藏汉平行语料库构建[J]. 中文信息学报, 2021, 35(11): 51-59. SHA J, FENG C, ZHOU J Q, et al.Constraction of high-quality and open source Tibetan-Chinese parallel corpus judicial domain[J]. Journal of Chinese information processing, 2021, 35(11): 51-59. [25] 冯鸾鸾, 李军辉, 李培峰, 等. 面向国防科技领域的技术和术语语料库构建方法[J]. 中文信息学报, 2020, 34(8): 41-50. FENG L L, LI J H, LI P F, et al.Constructing a technology and terminology corpus oriented national defense science[J]. Journal of Chinese information processing, 2020, 34(8): 41-50. [26] 刘妍, 熊德意. 面向小语种机器翻译的平行语料库构建方法[J]. 计算机科学, 2022, 49(1): 41-46. LIU Y, XIONG D Y.Construction method of parallel corpus for minority language machine translation[J]. Computer science, 2022, 49(1): 41-46. [27] 杨锦锋, 关毅, 何彬, 等. 中文电子病历命名实体和实体关系语料库构建[J]. 软件学报, 2016, 27(11): 2725-2746. YANG J F, GUAN Y, HE B, et al.Corpus construction for named entities and entity relations on Chinese electronic medical records[J]. Journal of software, 2016, 27(11): 2725-2746. [28] WEI C, KAO H, LU Z.GNormPlus: An integrative approach for tagging genes, gene families, and protein domains[J]. BioMed research international, 2015: 918710. [29] ISLAMAJ R, WEI C, CISSEL D, et al.NLM-Gene, a richly annotated gold standard dataset for gene entities that addresses ambiguity and multi-species gene recognition[J]. Journal of biomedical informatics, 2021, 118: 103779. [30] KRALLINGER M, RABAL O, LEITNER F, et al.The CHEMDNER corpus of chemicals and drugs and its annotation principles[J]. Journal of cheminformatics, 2015, 7(1): S2. [31] XU S, AN X, ZHU L, et al.A CRF-based system for recognizing chemical entity mentions (CEMs) in biomedical literature[J]. Journal of cheminformatics, 2015, 7(1): S11. [32] LI J, SUN Y, JOHNSON R, et al.BioCreative v CDR task corpus: A resource for chemical disease relation extraction[J]. Database(oxford), 2016: Baw068. [33] ISLAMAJ R, LEAMAN R, KIM S, et al.NLM-Chem, a new resource for chemical entity recognition in PubMed full text literature[J]. Scientific data, 2021, 8(1): 91. [34] PAFILIS E, FRANKILD S, FANINI L, et al.The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text[J]. PLoS one, 2013, 8(6): E65390. [35] PYYSALO S, OHTA T, ANANIADOU S.Overview of the cancer genetics (cg) task of bionlp shared task 2013[C]. Proceedings of the BioNLP shared task 2013 workshop, 2013: 58-66. [36] BADA M, ECKERT M, EVANS D, et al.Concept annotation in the CRAFT corpus[J]. BMC bioinformatics, 2012, 13: 161. [37] Joint WHO-China study team. WHO-convened global study of origins of SARS-CoV-2: China part[EB/OL].[2022-03-10]. https://www.who.int/publications/i/item/who-convened-global-study-of-origins-of-sars-cov-2-china-part. [38] DOMINGO J.What we know and what we need to know about the origin of SARS-CoV-2[J]. Environmental research, 2021, 200: 111785. [39] HOLMES E, GOLDSTEIN S, RASMUSSEN A, et al.The origins of SARS-CoV-2: A critical review[J]. Cell, 2021, 184(19): 4848-4856. [40] VAN HELDEN J, BUTLER C, ACHAZ G, et al.An appeal for an objective, open, and transparent scientific debate about the origin of SARS-CoV-2[J]. Lancet, 2021, 398(10309): 1402-1404. [41] KARLSSON E, DUONG V.The continuing search for the origins of SARS-CoV-2[J]. Cell, 2021, 184(17): 4373-4374. [42] LEITNER T, KUMAR S.Where did SARS-CoV-2 come from[J]. Molecular biology and evolution, 2020, 37(9): 2463-2464. [43] DAVIES M, FLEISS J.Measuring agreement for multinomial data[J]. Biometrics, 1982, 38(4): 1047-1051. [44] COHAN A, FELDMAN S, BELTAGY I, et al.SPECTER: Document-level representation learning using citation-informed transformers[C]. Proceedings of the 58th annual meeting of the association for computational linguistics, 2020: 2270-2282. [45] PONTUS S, SAMPO P, GORAN T, et al.BRAT: A web-based tool for NLP-assisted text annotation[C]. Proceedings of the demonstrations at the 13th conference of the European chapter of the association for computational linguistics, 2012: 102-107. [46] WANG X, SONG X, LI B, et al.Comprehensive named entity recognition on CORD-19 with distant or weak supervision[J]. ArXiv: 2003.12218v5, 2020. |
[1] | ZHAO Shuai, ZHOU Dan. Analysis on the Epidemic Situation of COVID-19 in Six Provinces Adjacent to Hubei [J]. Journal of Library and Information Science in Agriculture, 2020, 32(4): 5-14. |
|