Journal of Library and Information Science in Agriculture ›› 2021, Vol. 33 ›› Issue (1): 17-31.doi: 10.13998/j.cnki.issn1002-1248.20-0797
• Special manuscript • Previous Articles Next Articles
ZHANG Zhixiong1,2,3,4, LIU Huan1,2,4, YU Gaihong1
CLC Number:
[1] BELTAGY I, KYLE L, ARMAN C.SciBERT: A pretrained language model for scientific text[J]. arXiv preprint arXiv:1903.10676, 2019. [2] WAN H, ZHANG Y, ZHANG J, et al.AMiner: Search and mining of academic social networks[J]. Data intelligence, 2019, 1(1): 58-76. [3] SHOHAM Y, PERRAULT R, BRYNJOLFSSON E, et al.Artificial intelligence index 2017 annual report[J]. Artificial intelligence index, 2017. [4] WU Y, SCHUSTER M, CHEN Z, et al. Google's neural machine translation system: Bridging the gap between human and machine translation[J]. ArXiv preprint arxiv:1609.08144, 2016. [5] MCCULLOCH W S, PITTS W.A logical calculus of the ideas immanent in nervous activity[J]. The bulletin of mathematical biophysics, 1943, 5(4): 115-133. [6] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780. [7] LECUN Y, BOSER B, DENKER J S, et al.Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1(4): 541-551. [8] GOODFELLOW I, BENGIO Y, COURVILLE A.Deep learning[M]. Cambridge: MIT press, 2016. [9] 雷明. 机器学习与应用[M]. 北京: 清华大学出版社, 2019. LEI M.Machine learning and application[M]. Beijing: Tsinghua university press, 2019. [10] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. ArXiv preprint arxiv:1810.04805, 2018. [11] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[J]. ArXiv preprint arxiv:1802.05365, 2018. [12] RADFORD A, NARASIMHAN K, SALIMANS T, et al.Improving language understanding by generative pre-training[J]. URL https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language understanding paper.pdf, 2018. [13] RADFORD A, WU J, CHILD R, et al.Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8). [14] YANG Z, DAI Z, YANG Y, et al.XLNet: Generalized autoregressive pretraining for language understanding[J]. ArXiv preprint arxiv:1906.08237, 2019. [15] LIU Y, OTT M, GOYAL N, et al.Roberta: A robustly optimized Bert pretraining approach[J]. ArXiv preprint arxiv:1907.11692, 2019. [16] WANG A, SINGH A, MICHAEL J, et al. Glue: A multi-task benchmark and analysis platform for natural language understanding[J]. ArXiv preprint arxiv:1804.07461, 2018. [17] SUN Y, WANG S, LI Y, et al.ERNIE: Enhanced representation through knowledge integration[J]. ArXiv preprint arxiv:1904.09223,2019. [18] SUN Y, WANG S, LI Y, et al.ERNIE 2.0: a continual pre-training framework for language understanding[J]. ArXiv preprint arxiv:1907.12412, 2019. [19] CUI Y, CHE W, LIU T, et al.Pre-Training with whole word masking for Chinese BERT[J]. ArXiv preprint arxiv:1906.08101, 2019. [20] OpenCLaP. 多领域开源中文预训练语言模型仓库项目简介[EB/OL]. [2020-08-07]. http://zoo.thunlp.org/. OpenCLaP. Open Chinese language pre-trained model zoo project brief[EB/OL]. [2020-08-07]. http://zoo.thunlp.org/. [21] 谢玮, 沈一, 马永征. 基于图计算的论文审稿自动推荐系统[J]. 计算机应用研究, 2016, 33(3): 798-801. XIE W, SHEN Y, MA Y Z.Recommendation system for paper reviewing based on graph computing[J]. Application research of computers, 2016, 33(3): 798-801. [22] WANG D, LIANG Y, XU D, et al.A Content-Based recommender system for computer science publications[J]. Knowledge-Based systems, 2018: S0950705118302107. [23] 于改红, 张智雄, 马娜. 科技文献语篇元素自动标注模型研究综述[J]. 图书情报工作, 2018, 62(15): 132-144. YU G H, ZHANG Z X, MA N.Overview of science and technology literature discourse elements automatic annotation model research[J]. Library and information service, 2018, 62(15): 132-144. [24] HéLèNE D R, FALQUET G. An automated annotation process for the SciDocAnnot scientific document model[C]//5th international workshop on semantic digital archives, 2015. [25] LIAKATA M, TEUFEL S, SIDDHARTHAN A, et al.Corpora for the conceptualisation and zoning of scientific papers[C]//Proceedings of the international conference on language resources and evaluation, LREC 2010, 17-23 may 2010, Valletta, Malta: DBLP, 2010. [26] TEUFEL S, SIDDHARTHAN A, BATCHELOR C.Towards discipline-independent argumentative zoning[C]//The 2009 conference. association for computational linguistics, 2009. [27] FISAS B, RONZANO F, SAGGION H.A multi-layered annotated corpus of scientific papers[C]//LREC 2016, 2016. [28] 张智雄, 刘欢, 丁良萍, 等. 不同深度学习模型的科技论文摘要语步识别效果对比研究[J]. 数据分析与知识发现, 2019, 3(12):1-9. ZHANG Z X, LIU H, DING L P, et al.Identifying moves of research abstracts with deep learning methods[J]. Data analysis and knowledge discovery, 2019, 3(12): 1-9. [29] YU G, ZHANG Z, LIU H, et al.Masked sentence model based on BERT for move recognition in medical scientific abstracts[J], 2019. [30] DERNONCOURT F, LEE J Y. Pubmed 200k rct: a dataset for sequential sentence classification in medical abstracts[J]. ArXiv preprint arxiv:1710.06071, 2017. [31] JIN D, PETER S. Hierarchical neural networks for sequential sentence classification in medical scientific abstracts[J]. arXiv preprint arXiv:1808.06161, 2018. [32] 赵旸, 张智雄, 刘欢, 等. 基于BERT模型的中文医学文献分类研究[J/OL]. 数据分析与知识发现: 1-12[2020-08-05]. http://kns.cnki.net/kcms/detail/10.1478.G2.20200603.1457.004.html. ZHAO Y, ZHANG Z X, LIU H, et al. Classification of Chinese medical literature with BERT model[J/OL]. Data analysis and knowledge discovery: 1-12[2020-08-05]. http://kns.cnki.net/kcms/detail/10.1478.G2.20200603.1457.004.html. [33] DING L P, ZHANG Z X, LIU H, et al.Automatic keyphrase extraction from scientific Chinese medical abstracts based on character-level sequence labeling. In Wuhan’20: Joint conference on digital library, Wuhan, 2020. [34] GERARD S, YANG C S, CLEMENT T Y.A theory of term importance in automatic text analysis[J]. Journal of the American society for Info rmation Science, 1975, 26(1): 33-44. [35] Huang Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv:1508.01991, 2015. [36] NAVIGLI, ROBERTO, PAOLA V.Learning word-class lattices for definition and hypernym extraction[C]. Proceedings of the 48th annual meeting of the association for computational linguistics, 2010. [37] DONG L, YANG N, WANG W, et al.Unified language model pre-training for natural language understanding and generation[C]//Advances in neural information processing systems, 2019: 13063-13075. |
[1] | CHEN Wen, WANG Dongliang, XU Yunhao, CHEN Yuping, YANG Youqing. The Construction of Metadata Model for Digital Resources of Cultural Creativity Works [J]. Journal of Library and Information Science in Agriculture, 0, (): 1-1. |
[2] | ZHOU Wenjie, YANG Kehu. An Overview of the Evidence-based Digital Humanity Paradigm with Chinese Characteristics from the Perspective of the Construction of Independent Knowledge System [J]. Journal of Library and Information Science in Agriculture, 2022, 34(11): 5-13. |
[3] | WeiZhipeng, Zhao Yueyan, Yang Kehu, Zhou Wenjie. Evidence-based Digital Humanity Paradigm of First-hand Evidence: A Co Word Analysis Based on Bao's Zhan Guo Ce [J]. Journal of Library and Information Science in Agriculture, 2022, 34(11): 14-25. |
[4] | WEN Yufeng, MA Qianni, YANG Kehu, ZHOU Wenjie. Exploring the Paradigm of Secondhand Evidence Based Digital Humanity Research: A Case Study of Dunhuang Wooden and Bamboo Slips of Han Dynasty [J]. Journal of Library and Information Science in Agriculture, 2022, 34(11): 26-37. |
[5] | SHANG Hongli, ZHANG Sijie, WEI Zhipeng, YANG Kehu, ZHOU Wenjie. Evidence Integration Framework of Evidence-based Digital Humanities [J]. Journal of Library and Information Science in Agriculture, 2022, 34(11): 38-47. |
[6] | WANG Fei, QIU Fengjie, WANG Hao. Library Green Transformation from the Prospect of Public Libraries' High-Quality Development [J]. Journal of Library and Information Science in Agriculture, 2022, 34(11): 57-68. |
[7] | XIAO Keyi, QIN Jiajia, LI Yunfan. Practice and Enlightenment of Japanese University Libraries in Using Institutional Repositories for Research Data Management [J]. Journal of Library and Information Science in Agriculture, 2022, 34(11): 100-109. |
[8] | ZHU Yiping, ZHU Yi, ZHANG Cheng. Influencing Factors of User Participation Behavior in Online Health Community under the Dimension of Emotional Experience [J]. Journal of Library and Information Science in Agriculture, 2022, 34(10): 15-18. |
[9] | XIONG Huan, LUO Aijing, XIE Wenzhao, HUANG Panhao. Status and Influencing Factors of Health Information Literacy of the Rural Elderly [J]. Journal of Library and Information Science in Agriculture, 2022, 34(10): 44-56. |
[10] | FAN Zhixuan, WANG Jian, SA Xu, ZHANG Guilan. Structure-Utility of Descriptive Information of Agricultural Scientific Data from the Perspective of Users [J]. Journal of Library and Information Science in Agriculture, 2022, 34(10): 57-69. |
[11] | XIN Xiuqin. Analysis on the Key Contents of New Media Ecological Innovation and Development in Public Libraries [J]. Journal of Library and Information Science in Agriculture, 2022, 34(10): 91-100. |
[12] | CHEN Xuefei, HUANG Jinxia, WANG Fang. Open Science: Connotation of Open Innovation and Its Mechanism for Innovation Ecology [J]. Journal of Library and Information Science in Agriculture, 2022, 34(9): 5-14. |
[13] | WANG Lili, ZHANG Ning. Knowledge Correlation of Chinese Ancient Books from the Perspective of Digital Humanities [J]. Journal of Library and Information Science in Agriculture, 2022, 34(9): 51-59. |
[14] | XIAO Man, WANG Xuan, WANG Fang, HUANG Jinxia. Framework and Development Path of Open Science Capability [J]. Journal of Library and Information Science in Agriculture, 2022, 34(9): 15-28. |
[15] | LIU Jingyu, JIA Yujie, HUANG Jinxia, WANG Fang. Ethics Principle Framework of Data Handling for Open Scientific Innovation Ecology [J]. Journal of Library and Information Science in Agriculture, 2022, 34(9): 29-43. |
|